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Lecture 1

Clifford Algebras and
Spinors

1.1 Clifford algebra and Spin group

Let us consider an n-dimensional vector space V defined on a field K, with a
quadratic form @ : V x V — K.

The dual space is defined by V* = {T|T: V — K}.

Given a basis {X,} for V, the dual basis {e*} for V* is defined as e®(X,) = d7.
A tensor N of type (p, ¢) is a multilinear mapping

N:V'XxV*x .. xV*xXVxVx..xV—K

p q

The space of such tensors is denoted by T7 (V) and with the tensor product ®
it is the tensor algebra. When q is zero, we say that N has degree p.
The space of totally antisymmetric tensors of degree p is denoted by A,(V'), and
its elements are called p-forms. The space of p-forms has dimension dim A, (V) =
()-
The space of exterior forms is A(V) = @,_yAp(V), where Ag(V) = K and
MV)=V.

We can define two different algebra structures on A(V);

i) The exterior (wedge) product

/\:AP(V)XAq(V) — Aerq(V)
w,p — w/\d)z%(u]@(zﬁfqb@w)

gives A(V) the exterior algebra structure.
i) The Clifford product

T,y — ry+yz=20Q(,y)

w



gives A(V) the Clifford algebra structure which is denoted by CI(V, Q).

We can define two automorphisms on A(V);

i) The automorphism 7 : A, (V) — A, (V) with n* = 1 is defined by nw =
(—1)Pw and we have n(w o ¢) = nw o ¢ for w,¢ € A,(V) and o denotes the
wedge or Clifford product.

ii) The anti-automorphism £ : A,(V) — A, (V) with €2 = 1 is defined by
¢w = (—1)P/2lw and we have &(wo @) = Epotw for w,d € A, (V), o denotes the
wedge or Clifford product and || is the floor function which takes the integer
part of the argument.

By the automorphism 7, the Clifford algebra gains a Z,-grading

CLV.Q) = CI°(V,Q) & CI'(V,Q)

where for ¢ € C1°(V, Q) we have n¢ = ¢ and for ¢ € CI*(V, Q) we have ng = —¢.
So, CI(V, Q) is a Zy-graded algebra or a superalgebra with the even part C1°(V, Q)
and the odd part CI}(V, Q).

Certain elements of CI(V, Q) are invertible. For example, from the definition
of the Clifford product, one has 2% = Q(x,z) for z € V.
If Q(x,x) # 0, then we have 27! = oG

The group of invertible elements in CI(V, Q) is denoted by

Cl(V,Q)={pcCl(V,Q) ¢~ = ¢ 'p=1}.
The Clifford group is defined by
P(V,Q) = {¢ € CI*(V.Q) | $.V.s™ = V}.

Pin group
Pin(V,Q) = {¢ € P(V,Q) | ¢°p =1} .

Spin group
Spin(V,Q) = Pin(V,Q) N CI°(V, Q).

Pin group is the double cover of the orthogonal group (rotations)
Pin(V,Q) *% O(V,Q)

Spin group is the double cover of the special orthogonal group (rotations without
reflections)

Spin(V,Q) 2% SO(V, Q)

Representations of the Pin group are called pinors, p : Pin(V,Q) — End=
where = is the pinor space.
Representations of the Spin group are called spinors, p : Spin(V,Q) — End ¥
where ¥ is the spinor space.



1.2 Clifford and spinor bundles

Let us consider an n-manifold M with metric g, tangent bundle 7'M and the
cotangent bundle T* M.
We denote the frame basis on TM as {X,} and co-frame basis on T*M as e
with the property e*(X;) = o7
We can define the p-form bundle AP M on M with the wedge product A : AP M x
AYM — APTIM. We also have the exterior bundle AM on M.
From the Levi-Civita connection V on M, we can define related differential
operators on AM,;
Exterior derivative d : APM — APTIM with d = e® AV,
Co-derivative 6 : APM — AP~ M with § = —ix.Vx,
where ix : APM — AP~1M is the interior derivative (contraction) operation
defined by

OJ(Xl, ...,Xp) = Z‘Xlw(X27 ...,Xp)

for w € APM. We can also define the Hodge star operation * : APM — A" P M

as
1
(e A . Ner) = e p)lEal"'a"ap+1...aneap+1 A...Netmr.

If we change the product rule for e® from the wedge product to the Clifford
product

e®.eb 4+ eb.et =297
then we have the Clifford bundle CI(M).
There is a relation between Clifford and exterior bundles;
The action of CI1(M) on AM is given for x € A'M and w € AP M as

Tw = rAw+izw

wr = TANW —iznw

where Z is the vector field metric dual to = which is defined by z(Y) = ¢(z,Y)
for Y e TM.

Although the Spin group Spin(M) is a subgroup in CI(M), there are topo-
logical obstructions to define a spin bundle on M.
In general, a basis {X,} of TM transforms to another basis under the group
GL(n) (this is called as GL(n)-structure).
If {X,} is an orthogonal basis, then it transforms under the rotation group O(n)
(O(n)-structure).
For a bundle 7 : £ — M on M, one can define some characteristic classes
to characterize its topological structure. A bundle E is always locally trivial
m:E=FxM— M, but globally it can be non-trivial. The non-triviality of
a bundle is measured by the characteristic classes.
For the tangent bundle TM — M;
If the first Stiefel-Whitney class vanishes wy (M) = 0, then one can define an
orientation on M and the frame basis {X,} transforms under the group SO(n)
(SO(n)-structure).



If the second Stiefel-Whitney class also vanishes ws (M) = 0, then one can define
a lifting of SO(n)-structure to Spin(n)-structure by Spin(n) 21 SO(n).
Then, it is said that the manifold M has a spin structure and M is called as
a spin manifold.

So, in that case, one can define a spinor bundle ¥M on M induced from the
Clifford bundle CI(M).
Let ¥ denotes the representation space of Spin(n),
the associated bundle of the Spin(n) bundle P — M which is defined by

XM =P X Spin(n) b))

is called the spinor bundle ¥M — M on M.

The sections of the spinor bundle are called spinor fields.
One can also define an action of CI(M) on XM

For ¢ € CI(M) and ¢ € XM

c:CL(M) — SM
¢, — c(¥) =0y

by the Clifford multiplication.



Lecture 2

Twistor and Killing Spinors

2.1 Dirac and twistor operators

Let us consider the Levi-Civita connection V on T'M.

V can be induced onto the bundles AM, CI(M) and M.

So, we have the connection on spinor fields induced from the Levi-Civita con-
nection;

V:XM — T"MXM
Y — e Vx, Y

From the Clifford action on XM, for T*M = Ay M C Cl(M) we have

c:T"M XM — XM

where X is the 1-form metric dual of the vector field X. Note that the compo-
sition of the Clifford action and the connection

coV:SM L T*M@SM S SM
¥ o @V, eV, b= DY

corresponds to the Dirac operator. However, this is not the only first-order
differential operator that we can define on spinor fields.
We can write T*M ® XM as a direct sum of two components

T"M @XM =851 ® S5
by defining two projection operators P; and P, that satisfy P, + P, =1

P:T"M®@YXM — 5
~ 1 ~
X®@Yp — He”@(ea.X.w)



and

P:T"M®XM — S
~ ~ 1 ~
X®yY — X®w—ﬁe“®(ea.X.w)

Let us take the compositions of P; and P, with ¢

coP :T*M&SM 24 § S uM
~ 1 ~ 1 ~ ~
Xy — —e"Q(eq.X W) — —eeg. X=X
n n

and

coPy:T"M@SM 12 S, S sM
~ ~ 1 ~
X®Y — X®¢—Ee“®(ea.X.w)»—>

> )?.1/) - le“.ea.)?.zb =0
n

where we have used e®.e, = e A e, —ixae, = n since e* Ne, =0 and i xae, =
ea(X*) =62 =n.
So, this implies that we have S; = im(c) and Sz = ker(c).
Then, we have T*M @ XM = XM & ker(c). We will call S = XM as spinor
bundle and Sy = ker(c) as twistor bundle.

Now, we consider two projections of V and see that we can define two first-
order differential operators on X M.

i) The projection to the first component

coPLoV:XM ¥ T*MeosM s S yMm
v = e ®@Vx Y

1 1
— ﬁeb ® (ep.e*.Vx, ¥) — geb.eb.e“.vxaw = Py

is the Dirac operator.
The spinors which are in the kernel of the Dirac operator

Py =0

are called harmonic spinors and are solutions of the massless Dirac equation.
The spinors which ar eeigenspinors of the Dirac operator

Py =mip

are solutions of the massive Dirac equation, where m is a constant corresponding
to mass.



ii) The projection to the second component

T*M @M 2 8, 5 ker(c)
e*@Vx, 1 —

coP,oV:YXM
(0

17 |«

1
e*RdVx, ¥ — Eeb ® (ep.e*.Vx, 1) —

I

1
eVx, Y — Eeb.eb.ea.vxaw =0

So, the projection onto Ss gives e® ® (anzb — %ea.ﬁw). Then, we have the
twistor (Penrose) operator

1~
PX = VX_EXE

for X € TM and X € T*M its metric dual.
The spinors ¥ which are in the kernel of the twistor operator and satisfy the
following equation

Vx¢ = %)?-M

are called twistor spinors.
If a spinor 9 is a solution of both massive Dirac equation and twistor equation,
then it is called as a Killing spinor and satisfies the following equation

Vxtp = AX .4

where A is the Killing number, wh,ch can be real or pure imaginary. From
Vxth = LX. Py = 2 X 1, we have A := 2.

n
The spinors which are in the kernel of V

Vxy =0

are called parallel spinors (or covariantly constant spinors). This is a special
case A = 0 of Killing spinors.

2.2 Integrability conditions

We investigate the integrability conditions for the existence of special types of
spinors on a spin manifold M.

i) Schrédinger-Lichnerowicz (Weitzenbock) formula
From the definition of the Dirac operator, we have for any spinor

PPy = €"Vx, (e".Vx,1)
= b (vaea.VXai/} + ea.VvaXadJ) .



We will use the normal coordinates for which connection coefficients are zero
and we have Vx, e, = 0 = [X,, Xp]. So, we can write

p*p = e’ Vi, Vx, 0¥

1 1
= i(eb.ea +¢e%.e?).Vx, Vx, 0 + i(eb.ea —e%.e").Vx, Vi,

1

= VXaVXa1/J + z(eb.ea — ea.eb). (vavXa — vXava)i//
1

= VxaVx, ¢ — 5eb.ea.R(Xa,X,,)qp

where we have divided the symmetric and antisymmetric parts and used the
identities e’.e® + e®.e® = 2¢g% and e®.e® = —e’.e? for a # b in the second and
third lines. The curvature operator is defined by R(X,Y) = [Vx, Vy] = V[x v
for X, Y € TM. In normal coordinates, we have R(X,, Xs) = [Vx,,Vx,]-

For any spinor v, the action of the curvature operator can be written in terms
of the curvature 2-forms R, as

R(Xu, Xo)to = 3 Ryt

(The proof can be found in; .M. Benn and R.W. Tucker, An Introduction to
Spinors and Geometry with Applications in Physics, 1987, Ch.8-9). So, we have

1
D*) =VxaVx,1h— zeb.ea.Rabw

We can define V? = VxaVx,, Ricci 1-forms P, = ixa. R, and the curvature
scalar R = ixa P,.

For zero torsion, we have the identities Rgp A e® = 0 and P, A e® = 0.

So, we can write the identities e*. Ry, = €* A Rgp + ixaRep = P, and e®. P, =
e® A Py, +ix» P, = R. Then, we have

1
D*) = V2 = Ry,
This is called the Schrédinger-Lichnerowicz (Weitzenbock) formula.
ii) Twistor spinors
The existence of special types of spinors constrain the geometry of M.

Let us consider a twistor spinor ¢, namely we have Vx 1 = %ea.pzﬁ.
By taking the second covariant derivative

1 1
Vx,Vx, = vabea-!@d) + Eemvxbpﬁ’

in normal coordinates 1
Vx,Vx, ¢ = ﬁea'VXbpw

and similarly for the reversed order of indices

1
Vx,Vx, 9= Eeb~VXa .

10



From the difference of the last two equations and the definition of the curvature
operator, we obtain

R(Xa,Xb)¢ = % (eb.anplb - ea~VXbpw)

and the action of the curvature operator on spinors gives

Rupth = = (e Vx, P~ e Vi, DY), (2.1)

By Clifford multiplying with e® from the left (from e®. Ry, = Py)

Py = % (e*.ep.Vx, P — e*.eq.Vx, D)

and using the identities e®.e, + ep.€® = 2g; and e®.eq = n

Py = % (—ep.e*" Vx, DY + 2V x, D —nVx, D)

From the definition of the Dirac operator, we have

(n—2)

Pyap = f%eb.p% 2 Vx, Dy (2.2)

By Clifford multiplying with €® from the left (from e’.P, = R)

R _ _geb.eb.pQw_ Meb.vxbpqp
n n
_ _Mp%/} (2.3)

n

where we have used e’.e;, = n and the definition of the Dirac operator. Hence,
we obtain the first integrability condition for twistor spinors

n

2= ———— 2.4
PP - R (2.4
By substituting this equality in (2.2), we have
n n
VbV = o T m gy eV T g et

or by defining the Schouten 1-form K, = ﬁ (ﬁea — Pa), we obtain the
second integrability condition for twistor spinors

Vx, DY = S Kot (2.5)

Moreover, we can define the conformal 2-forms as (for n > 2)

1 1
CabZRab—i(Pa/\eb—Pb/\ea)—F

n—2 (n—l)(n—2)Rea/\6b

11



or in terms of Clifford products

1

1
Cowp=Rop — —— (ea.Pb — eb~Pa) +
n—2

By using (2.1), (2.2) and (2.3), one can eailsy found the following third integra-
bility condition for twistor spinors

Capth =0 (2.6)

This means that, if a twistor spinor ¢ exists on a manifold M, then it must be
in the kernel of the conformal 2-forms C,.
In conformally-flat manifolds, we have C,, = 0 for n > 2. So, the third integra-
bility condition is automatically satisfied in conformally-flat manifolds. Hence,
conformally-flat manifolds admit twistor spinors. But, they can also exist on
nonconformally-flat manifolds with Cgp.10 = 0.

iii) Killing spinors
Now, consider a Killing spinor v, that is Vx, ¢ = Aey 9.
By taking the second covariant derivaive and from the definition of the curvature
operator, we have

R(X., Xp)¥ = Vx,Vx, 0 —Vx,Vx, ¢
= —A(eq.p — €p.€q).1

From the identity eq.ep — €p.€q = €4 Nep +ix,€p —€p N €q — ix,6q = 264 A €
and the action of the curvature operator on spinors

Rapt) = —4X%(eq N ep).t)
By Clifford multiplying with e® from the left, we obtain (from e*.R,, = F)

Pyap = —4X%e(eq Nep).p

—4X%(n — 1)ep.tp
where we have used e®.(e, Aep) = e* Neg Nep+ixalegAep) = (ixaeq)ep —e* A
ix,er = (n — 1)ep since we have ixae, = n and e Aix, ep = ep.
Again, by Clifford multiplying with e® from the left

Rip = —4X *n(n — 1)y
Since the coefficients of ¥ in both sides are scalars, we have the identity
R = —4Xn(n —1).

R has to be positive or negative (if non-zero), then A must be real or pure
imaginary.

The integrability conditions of Killing spinors, implies that Einstein manifolds
(P, = ceq with ¢ constant) admit Killing spinors.

12



IF M is Riemannian, then the existence of Killing spinors requires that M is
Einstein.

iv) Parallel spinors
For a parallel spinor v, that is Vx¢ = 0, the integrability conditions give

P, = 0.

So, Ricci-flat manifolds admit parallel spinors.
In the Riemannian case, the existence of parallel spinors requires that the man-
ifold to be Ricci-flat.

13



Lecture 3

Holonomy Classification

3.1 Holonomy groups
Let v be a loop on M, that is
v:[0,1] — M and ~(0) = ~(1).

Take a vector X € T, M and parallel transport X via connection V along ~.
After a trip along 7, we end up with a new vector Y € T,,M.
Thus, the loop =y and the connection V induce a linear transformation

gy T,M — T,M
X — Y

The set of these transformations constitute a group and is called the holonomy
group at p € M;

Hol(p) = {gy|v:[0,1] — M,~(0) = (1) = p}.

If M is simply connected (w1 (M) = 0), then Hol(p) is independent of p and ~
and we denote the holonomy group of M as Hol(M).

In general, Hol(M) is a subgroup of GL(n).

If we choose the connection V as the Levi-Civita connection, then we have the
metric compatibility Vg = 0 and V preserves the lengths. So, Hol(M) C O(n).
If M is orientable, then Hol(M) C SO(n).

Holonomy principle: The reduction of the holonomy group Hol(M) of M
to a subgroup of GL(n) is equivalent to the existence of a covariantly constant
(parallel) section of a bundle E on M.

This parallel section is invariant under the action of Hol(M).

The problem of finding possible holonomy groups of Riemannian and Lorentzian
manifolds is solved. However, for arbitrary signature manifolds, it is an unsolved
problem.

14



For the Riemannian case, we have the Berger’s table
(A. Besse, Finstein Manifolds, 1987);

n Hol(M) C SO(n) Geometry
n SO(n) generic
2m U(m) Kéhler
2m SU(m) Calabi-Yau
4m Sp(m) hyperkéhler
dm Sp(m).Sp(1) quaternionic Kéhler
7 Gs exceptional
8 Spin(7) exceptional
16 Spin(9) -

where Sp(m).Sp(1) = Sp(m) x Sp(1)/Zs.

Kéhler manifolds: For a n = 2m dimensional manifold M, if one can define
an almost complex structure J : TM — TM with J?> = —1 and the property
g(JX,JY) = g(X,Y) for XY € TM, the M is called as an almost complex
manifold.

Moreover, if we have VJ = 0, the J is called as a complex structure and M is
called as a complex manifold.

If we can define a symplectic 2-form w(X,Y) = g(JX,Y") which is parallel (and
hence closed) Vw = 0, then M is a Kihler manifold and w is called as the Kéhler
form.

Covariantly constant nature of w implies the restriction of holonomy to U(m).
One can define (p, ¢)-forms on M with p holomorphic and ¢ anti-holomorphic
components.

Calabi-Yau manifolds: Since SU(m) C U(m), manifolds with SU(m) holon-
omy are Kéhler.
Calabi-Yau manifolds are Ricci-flat K&ahler manifolds with vanishing first Chern
class.
Besides the parallel complex structure J and the parallel Kéhler form w, there
is also a parallel complex volume form © € A®OAf.
This implies the restriction of holonomy to SU(m).

hyperkéahler manifolds: A hyperkéhler structure is a triple {I, J, K} of com-
plex (K&hler) structures with the property IJ = —JI = —K and three closed
forms w;.
Hyperkéhler manifolds are Ricci-flat.

quaternionic Kéhler manifolds: The structure of quaternionic Kéhler mani-
folds is similar to the hyperkahler case.
However, quaternionic Kéhler manifolds are Einstein manifolds.

15



Ga-holonomy manifolds: Gy C SO(7) is the automorphism group of octo-
nions.
There is a parallel 3-form ¢ which is invariant under Gs.
This implies the restriction of holonomy to Gs.
The 4-form =¢ is also parallel.
Mamifolds of Ga-holonomy are Ricci-flat.

Spin(7)-holonomy manifolds: Spin(7) C SO(8).
There is a parallel 4-form ¥ which is invariant under Spin(7).
This implies the restriction of holonomy to Spin(7).
Manifolds of Spin(7)-holonomy are Ricci-flat.

Both parallel forms in Go and Spin(7) holonomy manifolds can be con-
structed from parallel spinors. This is the reason of Ricci-flatness.

3.2 Holonomy classification for parallel and Killing
spinors

i) Parallel spinors

We saw that the Ricci-flatness is an integrability condition for the existence of
parallel spinors.

Because of the holonomy principle, the existence of parallel spinors also implies
the reduction of the holonomy group.

So, in the Riemannian case, parallel spinors exist on Ricci-flat special holonomy
manifolds.

Then, from the Berger’s table, we obtain Wang’s table of manifolds admitting
parallel spinors

(M.Y. Wang, Parallel spinors and parallel forms, Ann. Glob. An. Geom. 7
(1989) 59);

n Hol(M) Geometry parallel spinors
dm + 2 SU(m+1) Calabi-Yau (1,1)
dm SU(2m) Calabi-Yau (2,0)
dm Sp(m) hyperkéahler (m+1,0)
7 Go exceptional 1
8 Spin(T) exceptional (1,0)

In even dimensions, complex spinor bundle decomposes into two chiral sub-
bundles XM = XM & X~ M.
For v € ¥ M, iz = 4 and for vp € ¥~ M, iz.1) = —1) where z is the volume
form. Spinors in ¥+ M are called Weyl spinors.
(p,q) in the table denotes the number of spinors in £+ M respectively.

16



Those special holonomy manifolds, have importance in string/M-theory.
In string theory, we have 4 space-time and 6 compact Riemannian dimensions;
M10 = M4 X Mﬁ.
In the absence of fluxes, My can be Minkowski space-time. On the other hand,
the supersymmetry transformations require the existence of parallel spinors on
Mg. Then, Mg must be a Calabi-Yau (SU(3)-holonomy) 3-fold from the table
(m =1 in the first row);

M10 = M4 X M6
~—~ ~—~
Minkowski  Calabi-Yau
In M-theory, we have 4 spce-time dimensions and 7 compact Riemannian di-
mensions; M11 = M4 X M7.
If M, is Minkowski, then the existence of parallel spinors on My requires that
M7 must be a Ge-holonomy manifold (fourth row in the table);

Ml 1= M4 X M7
~—~ ~—~
Minkowski  G2-holonomy

If we let the decomposition My = Mz x Mg, then for Mz three dimensional
Minkowski, Mg must be a Spin(7)-holonomy manifold (fifth row in the table);

M1 1= M3 X Mg
~— ~—
Minkowski  Spin(7)-holonomy

Similarly, in F-theory in 12 dimensions, we have

M12 = M4 X M8
—~ —~
Minkowski  Spin(7)-holonomy
ii) Cone construction

For a manifold (M, g), the warped product manifold M = RT x,» M with the
metric g = dr? + r?g is called the metric cone of M.
The vector fields X € TM can be lifted to TM. The basis vector on TR will
be denoted by E = r% (Euler vector).

The Levi-Civita connection V on Z:VJ\’Z is related to the Levi-Civita connection
V on TM as follows, for X, Y € TM

VeX=VxE=X , VgE=F

VxY =VxY —g(X,Y)E

The relations between curvatures are

R(X,Y)Z = R(X,Y)Z — (9(Y, 2)X — g(X, Z)Y)

Ric(X,Y) = Ric(X,Y) — (n — 1)g(X,Y)

17



~ 12
R=- (R—n(n-1))

r

So, if M is Einstein, then M is Ricci-flat.

If M has parallel spinors, then M has Killing spinors corresponding to them.
(This can also be seen from the relations between connection 1-forms @, and

wab and the action of connection on spinors Vxv = X (v) + iwab(X).e“.eb.z/J.
In that case, Vx 1 transforms into V1) ~ X .4))

iii) Killing spinors
We have turned the classification problem of manifolds admitting Killing spinors
to the classification of manifolds admitting parallel spinors via cone construc-
tion.
So, from the Wang’s table, we have Bér’s table
(C. Bér, Real Killing spinors and holonomy, Commaun. Math. Phys. 154 (1993)
509);

n Geometry of M Cone M Killing spinors

n round sphere flat (2721 2ln/2]y
dm —1 3-Sasaki hyperkéhler (m+1,0)
dm — 1 Sasaki-Einstein Calabi-Yau (2,0)
dm+1 Sasaki-Einstein Calabi-Yau (1,1)

6 nearly Kéahler Gy (1,1)

7 weak Go Spin(7) (1,0)

Sasaki_—Einstein manifolds: A Sasakian structure on a Riemannian manifold
M is a Kllling vector field K of unit norm with the property

VxVyK = —g(X,Y)K + K(Y)X forX,Y e TM
If a Sasakian manifold is also Einstein, then we have a Sasaki-Einstin manifold.

3-Sasaki manifolds: A 3-Sasakian structure on a Riemannian manifold M is
a triple K;,7 = 1,2, 3 of Sasakian structures with the relations

vKin = eij;ch
and some extra properties.

nearly Kéahler manifolds: A nearly Kéhler structure on a Riemannian man-
ifold M is an almost complex structure J : TM — T M with the property

ixVxJ =0

but VJ # 0. So, it is not Kahler.
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weak Go manifolds: On a weak G5 manifold, there is a 3-form ¢ with the
property

dp= A+ o

So, it is not closed as in the G5 case. Indeed, ¢ is a Killing-Yano form.

The importance in string/M-theory;
In string theory, we have M1y = My x Mg. In the presence of fluxes, M, can
be Anti-de Sitter (AdS) and the supersymmetry transformations require the
existence of Killing spinors on Mg. Then, Mg must be nearly Kéhler;

M]Q = M4 X Mﬁ
~—~ ~—~
AdS,y nearly Kéahler

If we let Myg = M5 x Ms, then we have

M10 = M5 X M5 or M10 = M5 X M5
~— =~ ~— ~—
AdSs S5 AdSs  Sasaki-Einstein
In M-theory, we have My, = My x M. In the presence of fluxes, M, is AdS and
if there is no internal flux, then My is S7. However, in the presence of internal
fluxes, the existence of Killing spinors requires that My is weak Ga-holonomy
manifold;
M11 = M4 X M7 or M11 = M4 X M7
~— =~ ~—~ ~—
AdSs 87 AdSy weak Gs

Similarly, if we let My, = M5 x Mg, then we have

M11 = M5 X M6 or M11 = M5 X M6
~N~ =~ ~~ ~~
AdSs S6 AdSs  nearly Kéhler

iv) For the Lorentizan case, the manifolds admitting parallel spinors are
either Ricci-flat x R* or Brinkmann spaces (including pp-wave space-times).
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Lecture 4

Spinor Bilinears

4.1 Dirac currents

We can define a Spin-invariant inner product on spinor fields.
For ¢, ¢ € ¥ M, we denote the inner product as

(¥,0) = £(¢,v)

where j is an involution in D = R, C or H (depending on the Clifford algebra in
relevant dimension). So, j is identity in R, identity or complex conjugation (*)
in C, quaternionic conjugation or reversion in H.

The inner product can be symmetric or anti-symmetric (symplectic) depending
on the dimension.

For any a € CI(M) and ¢ € D, we have

W, a.0) = (a7, ¢)
(e, 0) = (¥,9)

where J can be &, &n, £ or £n* depending on the dimension.
From this inner product, we can define the space of dual spinors %* M.
For ¢ € ¥*M, we have
¥(9) = (¥, 9)
Let us consider the tensor product ¥M ® ¥*M. Its action on XM is given
by B
(Y@ )k = (¢, k)Y

for 1,k € XM and ¢ € X*M.

So, the elements of XM ® ¥*M are linear transformations on %M.

It is isomorphic to CI(M) (to its simple part), since we have ¢ : CI(M) @XM —
M.

Then, we can write ¥ ® ¢ € XM ® X*M in terms of differential forms which are
elements of CI(M).
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For any orthonormal co-frame basis {e®}, we have the Fierz identity in terms
of the inner product

Vo = ($,0) + (d,eqt))e” + (¢, epa-)e™ + ... +
+(¢7 €ap...aza1 ~'l/))6ala2map =+ ...+ (71)“1/2] (¢, zz/})z

where e®192% = ™ A e?2 A ... Ae® and z is the volume form.
We can define the p-form projections of 1¢ as (1)¢), which are called spinor
bilinears.

If we take ¢ = ¢, we have the following definitions;
Dirac current: The vector field Vi, which is the metric dual of the 1-form (¢));.
In general, the map

( 1:SM — T*M=TM
Yo (P =V

is called the squaring map of a spinor. B
p-form Dirac current: The p-form component of ;

(wa)P - W, €ap...aza1 .¢)ea1a2"'ap

4.2 CKY and KY forms

We investigate the properties of p-form Dirac currents for special spinors.

i) Twistor spinors
The Levi-Civita connection V is compatible with the spinor inner product
and the duality operation. Namely, we have

Vx¥ = Vx¢
for X e TM, ¢y, € XM.

For a twistor spinor 1, we can calculate the covariant derivative of the p-form

Dirac current (1¢), as
Va0, = (Vx,)9), + (6(Vx, ),
" ((ea PP, + - (0(ca DB,

where we have used the twistor equation Vx ¢ = %ea.pw.
From the following properties of the tensor products of spinors and dual spinors,
for « € Cl(M), p € ¥M and ¢ € ¥*M

a.(PR¢) = ap®¢
Weda = peald
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we can write 1(eq. V) = (YP).eJ. The definition of the Dirac operator on
spinors P = eb.VXb and the property eb‘j.ea‘7 =eb.e, for J = € or &n gives

Vx, (), = % (e (Vx, )0 + ¥ (Vx, 1) e0)

Since V is compatible with the tensor product, we have (Vx, )y = Vx, (1¢) —
¥(Vx,1¥). So, we can write

vXa W@)p = % (ea-eb-vxb(qﬁa) - ea~eb-¢(Vwa) + 1/)(VXb¢)-€b~€a)p

Now, we analyze each term on the right hand side of the above equation. For
the first term, we can use the definition of Hodge-de Rham operator ¢ = e®.Vx,
on differential forms which are elements of CI(M) and we can write

eweb'va W@) = ea-d(wa)

For the second and third terms, we can use the explicit expansion of Clifford
product in terms of wedge product and interior product as e,.cc = e, AN +ix, o
and a.e, = e, Ana —ix,na. So, we have
€a-€b-¢(vxb¢) = eg A\ eb A '(/J(Vwa) - iXu, (eb A w(Vwa))
tea Nixe (V(Vx,¥)) +ix,ixe (V(Vx,¥))

and

V(Vx, )l ea = eaAn(e®An(@(Vx, ) —ix.n (e An(v(Vx,1)))
—€g N\ anbn (l/’(szﬂ/})) + ZXaanbn (w(Vwa))

By summing all the terms and considering the degrees of differential forms, we
obtain

an (wa)p = % [(ead(wa))p - 26@ A eb A (w(vxbi/)))p,g - 2iXaZ.Xb (?ﬁ(vquﬁ))pﬁ}

By using (€a~d'(¢1/1)) =e4 N (d’(wi))p_l +ix, (d’(wi))m_17 we find

Va0 = [en (0) 26 A (0T),
Tix, (2W) - 2ix0 ((Tx,8))), ., (4.1)

By taking the wedge product of (4.1) with e®A from the left and using e*AVyx, =
d and e* A ix,a = pa for a p-form «

— p+1
=P

d), = o= (dP) = 2ixe (6(Va,9)) 1
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By taking the interior derivative ix. of (4.1) and using —ix.Vyx,6 = 4§

_ _ 1 _ -
5w =~ (W) - 26 A (VD)
So, by comparing the last three equations, we obtain
— 1 . — 1 _
Vx, (), = oy Tix. APy — mprie” (W)

This equation has a special meaning. If a p-form w satisfies the equation

1 ~
ixdw — ——— X AN dw

v =
X +1 n—p+1

for any X € TM, then w is called as a conformal Killing-Yano (CKY) p-
form.

So, p-form Dirac currents of twistor spinors are CKY forms.

CKY forms are antisymmetric generalizations of conformal Killing vector fields
to higher degree forms.

For p = 1, w is metric dual of a conformal Killing vector.

ii) Killing spinors

For a Killing spinor ¢, the covariant derivative of (1)¢), gives
Vx, W)y = (Vx,9)9), + (@(Vx,¥),

= (Aeatd), + (¥(Aeat)))

p

where we have used the Killing spinor equation Vx_ 1 = leq.1. B
From the properties of the inner product, we have 1(Aeq.10) = M (ya))e? .
So, we can write

Vx, @), = (Aeatd)) + (N (Wi)ed),
= Xea A(Y)p1+ Xix, ()1 + N el AWU)) = Nig (i),

where we have used the expansion of the Clifford product in terms of the wedge
product and interior derivative.
By taking wedge product with e® from the left

d(W)p = Ap + 1) (W)pr1 — Msgn(ed )(p+ 1) (V)4
and by taking interior derivative with ¢xa
S(W)p = =A(n —p+1)(¥)p—1 — Msgn(e ) (n —p+ 1) ()],

Here, we have four parameters to choose; A real or pure imaginary, j = Id or x,
J =&,&%,&n or {n* and p even or odd (we consider complex spinors).
So, there are 16 possibilities to choose;
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A J J p
Re Id & odd even
Re Id & odd even
Re * £ odd even
Re * & odd even
Im Id 13 odd even
Im Id & odd even
Im * £ even odd
Im * & even odd
Re Id én even odd
Re Id &n* even odd
Re * &n even odd
Re * n* even odd
Im Id &n even odd
Im Id &n* even odd
Im * &n odd even
Im * &n odd even

By the detailed considerations of the possibilities, one can see that we have
two different cases. The first column of p gives Case 1 and the second column
of p gives Case 2 in which the equations above transforms into the following
equalities.

Case 1:
Vx, (Qﬁ@)p = 2Xeq A (YU)p—1
d(w¢)p =0
() = —2Xn—p+ 1))
Case 2:

VXa(w@)p = 2)‘iXa(w@)p+1

d(wa)p = 2\p+ 1)(#’@)1%1
(W), = 0
By comparing the equations in Case 1, we find
_ 1 _
Vx, (YY), = e No(pi)y
and in Case 2, we have
_ 1 _

Vx,(@Y), = lead(¢w)p
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By comparing these equalities with the CKY equation, one can see that Case 1
and Case 2 correspond to two parts of the CKY equation;

1 ~
v = ixdw ——X N6
XW +1ZX w n—p+1 w
KY part CCKY part

Case 1 corresponds to the CCKY part and Case 2 corresponds to the KY part.
Killing-Yano (KY) forms are co-closed (dw = 0) CKY forms and satisfy

wa = ixdw

+1
They are antisymmetric generalizations of Killing vector fields to higher degree
forms.
For p = 1, w is the metric dual of a Killing vector.
Closed CKY (CCKY) forms are CKY forms with dw = 0 and satisfy

1 ~
Vxw=———"""—XAd
xw n—p+1 w
CKY equation has Hodge duality invariance, namely if w is a CKY p-form, then
*w is also a CKY (n—p)-form. To see this, let us apply the Hodge star operator
* to the CKY equation

1 -
ixdw — ————— x (X A6
+1*lxw n—p—i—l*( w)

Since V is metric compatible, we have *Vy = Vx*. From the definition § =
*~1d * n and the identity *(a A X) = ix * « for any p-form «, we can write

*Vxw =

sixdw = wixxx ‘dxsxlw

= xx (0t wX)
wx (=X Aot w)
= xx L (—X Adxw)
= —XAf*w
where we have used that *~' is proportional to * from the identity * * a =

(—1)p(n=p) ‘gzigl a. We can also write

(X Adw) = *(—dnwAX)
= —ix *0nw

= —ixxx ldxgnw

= —ixd*xw
So, we obtain
1 . 1 =
Vxtw=——-—ixdsw——XANJxw
n—p+1 p+1
*KY part *CCKY part
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However, as can be seen from the above analysis, the two parts of the CKY
equation transform into each other under *. Namely, we have

KY — *CCKY and CCKY — *KY

This means that CCKY forms are Hodge duals of KY forms.

Then, p-form Dirac currents of Killing spinors correspond to KY forms (in Case
2) or the Hodge duals of p-form Dirac cuurents of Killing spinors correspod to
KY forms (in Case 1) depending on the inner product in relevant dimension;
Case 1:

Vi () = i, d + (60),
Case 2:
Vx, (@), = e 12'Xa,d(1/@)p

The equations satisfied by the p-form Dirac currents of Killing spinors have
an analogous structure with (generalized) Maxwell equations

dF =0 , d«F=j
In Case 1, we have

d(wi)p =0

dx (i), = —2(=1)PAn—p+1)* )y

Hence, p-form Dirac currents (¢@)p behave like the field strength F' of the p-
form Maxwell field and the source term j is constructed from the Hodge duals
of the one lower degree Dirac currents *(11)),_1.

In Case 2, we have

d(Wd)y = 2P+ 1)WY)p+1
dx (W), = 0
So, *(11), behave like the (n — p)-form Maxwell field strength F' and source
term j is the Dirac cuurent of one higher degree (¥¢)p41.
Two sets of equations in Case 1 and Case 2 have also interesting relations

with Duffin-Kemmer-Petiau (DKP) equations. DKP equations are first-order
equations describing integer spin particles and are written as

dps — 56— =

where ¢ € CI(M) is the integer spin field which can be written as a sum of even
and odd parts ¢ = ¢ + ¢_ with ¢4+ = $(1 £7)¢ and p is the mass.

Between Case 1 and Case 2, the parity (oddness or evenness) of p changes. So,
if (¢, satisfies Case 1, then (¥1)),_1 satisfies Case 2. Hence, we have

d(Wp)p-1 =220(W0)y  ,  SWY)p-1=0
W) ==2An—p+1)(WP)p—1 .  dy),=0
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If we choose p = ! and define ¢4 = (Y¢),_1, ¢+ (1), for p odd or even

with g = 2Ap, we obtain

dpr =ppx , 06+ =0
0o = —pox ) doF =0

These are equivalent to the DKP equations.

Moreover, p-form Dirac currents of Killing spinors are eigenforms of the
Laplace-Beltrami operator A = —dé — dd.
If (1¢), satisfies Case 1, then (¥1)),_1 satisfies Case 2 and we have

A@/’E)p = _da(d’@)p = 2\(n—-p+ 1)d(7/”//)p—1
ANp(n —p+ 1) (Y1),

If (1)), satisfies Case 2, then (1)9)),+1 satisfies Case 1 and we have

A(ﬁ’a)p = *5d(¢a)p = =2X\p+ 1)5(1/)@)1%1
= 4N+ 1)(n—p+2)(¥YP),

iii) Parallel spinors
If ¢ is a parallel spinor Vxv = 0, then p-form Dirac currents are parallel
forms

Vx (lbw)p =0
Indeed, they are harmonic forms which are in the kernel of A
A(l/fa)p =0

_ More details can be found in
O. Acik and U. Ertem, Higher-degree Dirac currents of twistor and Killing
spinors in supergravity theories, Class. Quant. Grav. 32 (2015) 175007.
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Lecture 5

Symmetry Operators

5.1 Lie derivatives

For two vector fields X,Y € T'M, the Lie derivative of Y with respect to X
which is denoted by LxY is the change of Y with respect to the flow of X.
It can be written as

LxY =[X,Y]=X(Y)-Y(X).
Lie derivative has the property
[Lx,Ly] = Lixy]

For a differential form o € AM, the Lie derivative Lx with respect to X can
be written in terms of d and ix as

Lxa=1ixda+ dixc.

We consider Lie derivatives with respect to Killing and conformal Killing vector
fields. They are generators of isometries and conformal isometries

Lrg=0 ; K Killing vector
Log=2ug ; C conformal Killing vector (u function)

If o € Cl(M), namely an inhomogeneous differential form, then the Lie deriva-
tive w.r.t. a Killing vector K is written as

1. ~
Lrxa=Viga+ Z[dea]Cl
where K is the metric dual of K and [Jou is the Clifford bracket which is defined
for o, B € Cl(M) as [o, Bler = a.f — B.a.
For a spinor field ¢ € ¥ M, the Lie derivative w.r.t. K is

1 ~
Lxp =Vgip+ 10K9¥
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It has a derivative property on spinors ¢ € XM, ¢ € £*M

Lr (@) = (L)Y + d(LxY)

and compatible with the spinor duality operation. This is also true for conformal
Killing vectors C', but not true for an arbitrary vector field X.
So, the Lie derivative on spinors is only defined w.r.t. isometries.

5.2 Symmetry operators

A symmetry operator is an operator that maps a solution of an equation to
another solution.
We consider first-order symmetry operators for spinor field equations.

i) Dirac equation
For the massive Dirac equation 1 = map, the Lie derivative w.r.t. a Killing
vector K is a symmetry operator.
So, if 1 is a solution, then £ is also a solution

DLgY =mLi.

For the massless Dirac equation P = 0, the operator £¢ + %(n — 1) defined
w.r.t. a conformal Killing vector C (Lcg = 2ug) is a symmetry operator in n
dimensions, namely we have

1
D <£C - 5("* 1)#) Y =0.
These can be generalized to higher-degree KY and CKY forms.
For the massive Dirac equation, the following operator written in terms of a KY
p-form w (for p odd)
. p
L,y = (ix.w).V + ——dw.
W = (ixew).Vx, ¢ 3+ 1) (4
is a symmetry operator which reduces to £x for p = 1. (For p even, L,z is a
symmetry operator with z is the volume form).
For the massless Dirac equation, the operator written in terms of a CKY p-form

w
. p n—p
Loy = (ixaw). Ve 0+ ———dw.p — —————dw.
V= (o) Vi, 0+ 5oy det = 5o gy v
is a symmetry operator which reduces to £o — %(n — Dy for p = 1 (since
0C = —np).

ii) Killing spinors
Killing spinors are solutions of the massive Dirac equation wihch are also twistor
spinors.
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However, this does not mean that the symmetry operators of the massive Dirac
equation must preserve the subset of Killing spinors.
For a Killing vector K, the Lie derivative £ is a symmetry operator for the
Killing spinor equation; B

VxLg=AX.Lx1.

For higher-degree KY forms w, we investigate that in which circumstances the
operator L, defined for the massive Dirac equation is also a symmetry operator
for Killing spinors; _

VxLow=AX.L,y.

For a Killing spinor ¥ and a KY p-form w, we can write

Lot = (ixaw).anzb—i-ﬁdw.w

p
2(p+1)

— (_1)p-t p
= (=17 )\pw.i//+2(p+1)

= Alixew).eq.tb + dw.yp

dw.ip

where we have used the Killing spinor equation and the identities (ix.w).e, =
ea AN1(ixaw) —ix, Mixaw (second term is zero since ixiy is antisymmetric) and
€q Nixa = pw.

If we take p odd, then

Lw’(/) = )\pw.w + ﬁ

By calculating the covariant derivative, we obtain

dw.p

Vi, Lo = Vi, (pr.w + %;';de.w)

_ p p
= MWVx,wy+ApwVx ¢+ 72(]) 1) Vx,dw. + 72@ i 1)dw.VXaw

We can use the Killing spinor equation Vx, 9 = Aeq.9, KY equation Vx, w =
ﬁi x,dw and the integrability consition for the KY equation which can be
calculated as

1 )
VvaXaw = mVXbZXadw
1 . Ve d
= i w
1 Xe VX
from [ix,,Vx,] = 0 in normal coordinates (in general, we have [Vx,iy| =

By using the curvature operator R(X,, X3) = Vx,Vx, —Vx,Vx,, we can write
1

R(Xq, Xp)w = P} (ix,Vx, —ix,Vx,) dw.
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By multiplying e®A from the left, we have

1

e NR( X, Xp)w = p+1(e“/\iXbVXadw—ea/\iXaVdew)
1

= p+1(ea/\VXaidew—(p—&—l)Vdew)

where we have used [ix,,Vx,] =0 and e* ANix, Vx,dw = (p+ 1)Vx,dw. From
the identities AV, = d, d*> = 0 and Vx, = ix,d+dix, in normal coordinates,

we can write »

p+1

The action of the curvature operator on a p-form w is

e’ A R(Xa,Xb)w = — Vdew.

R(Xa, Xb)w = —ixeRgp N ix W
(for proof, see I.M. Benn and R.W. Tucker, An Introduction to Spinors and

Geometry with Applications in Physics, 1987).
So, we have

ea/\R(Xa,Xb)w = 7€a/\chRab/\iXCw
= (ixe(e* ANRap — R})) Nix w
= _Rcb /\ZXCW

Then, we obtain the integrability condition for KY forms w as follows
1
andw = Zina Nixbw.
p

Now, we can write the covariant derivative of L, as

Vi, Lot = /\pp ix, dw.p + N2 pw.eq.t)

+1

1
+§(Rba Nixow). W) + /\2 P dw.eq.1.

(p+1)
On the other hand, for the right hand side of the Killing spinor equation, we
have

Nea.Loth = N2peq.w.ap + )\2 P €q.dw.1p.

(p+1)
Obviously, the right hand sides of the last two equalities are not equal to each
other.

Let us consider special KY forms which have the following special integrability
condition N
Vxdw=—clp+1)X ANw

where ¢ is a constant. For example, in constant curvature manfiolds we have
R.p = ceq N ep and the special integrability condition is satified by all KY forms
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since the right hand side of the ordinary integrability condition gives

p .
ﬁRba/\szw = ¢ ep N eg Nixow
= —c(p+1l)e, Aw
where we have used e, A e, = —eg, A ep and ep At xsw = pw.

So, all KY forms are special KY forms in constant curvature manifolds.
If Rop = ceq A ep, then Py, =ixaRap = ¢(n — 1)ep and R = ixo Py = en(n — 1),
so we have

R

c= —— and Ry, =

nn—1) BEICERA

Moreover, we know from the integrability condition of Killing spinors that R =
—4X?n(n — 1) which implies that

c= —4)\? and Rap = —4X%e, A ep.

Then, the covariant derivative of L, turns into

P
L, = A
Vx, Lot P

+2X%p(eq A w)ah + A

ix,dw.ap + N2p(—eq Aw +ix,w).ap

m(ea Adw — ZXQdU.))’lZJ

where we have expanded the Clifford product in terms of wedge and interior
products and used the above equality for R,,. Finally, we obtain

VXaLwil) = >\2p(€a A w + ZX ) ”ll) + )\m(ea A dw + Y/Xadu))w
= Mpegw.a)+ /\mea.dw.w
= deq.Lo1.

So, we prove that for odd KY forms w in constant curvature manifolds (or odd

special KY forms with ¢ = n(ﬁl) in general manifolds), the operator

L, = (iXaw)~VXa1/) + dw.p

_r
2(p+1)
is a symmetry operator for Killing spinors.

iii) Twistor spinors

For a conformal Killing vector C' with Log = 2ug, the operator £ — %,u is a
symmetry operator for the twistor equation

Vx <£c—u>1/)— X.p (i’c—;u) Y.
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Note that it is different from the case of massless Dirac equation which was
Lo+ %(n — 1.
For higher-degree CKY forms w, we consider the operator

ot + #m.w

Lot = (ixew).Vx, o + TSy

(+1)

which reduces to £ — %u for p =1 since 5C = —np.
We investigate that in which condition the operator L, is a symmetry operator
for a twistor spinor v

1 ~
VxL,y = EX'ELM’[J'

By using the twistor equation, L, can be written as

L = (1P D b g bsdiont o o
By taking the covariant derivative
Vx, Lot = —(-1PEVx,w.p0 — (-1 Ew.Vx, DY
+(7+1>VX dw.p + mdw Vx, ¢
+mv&5w.w + méw.vxaw

Here, we can use the twistor equation V X, 0 = %ea.pw and the integrability
condition Vx, Py = §K A with K, = — 2 (%ea — Pa). By also expand-

ing Clifford products in terms of Wedge products and interior derivatives, we
obtain

p . p
L = —(=1)P— — (=1 ——
Vo Lut [ (=1) 2n(p+1)lxadw (=1) 2n(p+1)ea/\dw
___r
2n(n—p+1)
N
2n—p+1)

+(—1)p#ea Adw+ (—1)P

2n(n —p+1) iX“(sw} Py

+ [ - (f1)P§w.Ka + Vi, dw + anéw] 4.

p
2(p+1)

A similar calculation for the right hand side of the twistor equation gives

1 p p
—eq. DLy = | —(—1)P————ix, dw— (1)’ ———e, A d
néoPlat [ T T g et
P P :
1P e, 1 .
+(-1) 2n(n—p+1)6 A dw + (—1) 2n(n_p+1)zxa5w} D
p b p b
— (1P g’ w Ky + —————eq.€".
+| — (-1 oy, Ca-€ W b+2n(p+1)e“e V x,dw

p

. b
+2n(n —— €q-¢.Vx,0wl.1p
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(details of the calculation can be found in U. Ertem, Twistor spinors and ex-
tended conformal superalgebras, arXiv:1605.13361).

By comparing the last two equations, one can see that the coefficients of P
are equal to each other.

However, to check the equivalence of coefficients of ¥, we need to use the inte-
grability conditions of CKY forms. They can be calculated as (see U. Ertem,
Lie algebra of conformal Killing-Yano forms, Class. Quant. Grav. 33 (2016)
125033)

1 1
Vx, dw = P+ ea/\déw—i—lina/\iwa
p(n—p+1) p
n—p+1
Vx, 0w = ———— " iy ddw
(p+1)(n—p)
—p+1
+w(z’XbPa/\z‘wa+iXbRca/\z’Xcixbw)
n—p
%Mw + nﬁi;il = Py Nixxow + Rap Adixaixow.

In constant curvature manfiolds, these equalities satisfy the equivalence of the

coefficients of 1 (see U. Ertem, Twistor spinors and extended conformal super-

algebras, arXiv:1605.13361).

So, L, is a symmetry operator of twistor spinors in constant curvature mani-

folds.

Moreover, we can also consider normal CKY forms in Einstein manifolds which

have the following integrability conditions

_p+l

pln—p+1)
n—p+1

(p+1)(n—p)

P s + nTb

p+1 n—p+1

In that case also we have the equality Vx, L,¢ = %ea.ﬂLwd).

So, L, is a symmetry operator in Einstein manifolds with w are normal CKY

forms.

In constant curvature manifolds, all CKY forms are normal CKY forms.

Vx, dw = ea Nddw +2(p+ 1)K, Aw

Vx, 0w=— ix,0dw —2(n—p+1)ix, K, Nix,w

—2(n —p) Ky Nixaw.

In summary, we have the following diagrams of symmetry operators

P =mi Vxt = AX .4
£K £K
p=1 Cloddp (evenp, L, z) p=1 (\Lodd p, constant curvature
Lw = Z-X(LW.VXQ -+ %d&j Lo.) = iXaw.vXa + %dw
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and

Py =0 Vxt = 1 XDy
Lo+ in—1p Lo—gh
p=1 /(l p=1 (lconst. curv. , Einstein
Ly = ixew.Vx, + 555 — smprn 0@ Lo = ixew VX, + g5 + 5 00
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Lecture 6

Extended Superalgebras

6.1 Symmetry superalgebras

A superalgebra g is a Zg-graded algebra which can be written as a direct sum
of two components;

g=9go Do
The even part gg is a subalgebra of g and

the odd part g; is a module of gy, i.e., go acts on g1; go X g1 — ¢1-
The product rule is given by a bilinear operation [, |;

[]:gixgi — 0t , i,j=0,1
so we have
[,]:80% g0 — go
[ ]igoxg1 —m
[,]:91 <91 — 9o

If [, ] is antisymmetric on go; for a,b € go [a,b] = —[b, a]

and satisfies the Jacobi identity, for a, b, c € go [a, [b, c]] + [b, [c, a]] +[c, [a, b]] = 0
then gg is a Lie algebra.

Moreover, if [, ] is symmetric on gy, for a,b € g1 [a,b] = [b, d]

and [, ] on g = go @ g; satisfies the graded Jacobi identity

[av [b> C]] - Hav b],C] - (_1)|a||b|[b7 [a7 C]] =0

for a,b,c € g and |a| denotes the degree of a which corresponds to 0 or 1 depnd-
ing on that a is in gg or g1, respectively, then g is called as a Lie superalgebra.
The dimension of a superalgebra is denoted by («|8) where « is the dimension
of go and (3 is the dimension of g;.

36



i) Killing-Yano superalgebra
Killing vector fields on a manifold M have a Lie algebra structure w.r.t. the
Lie bracket of vector fields;

(K, Kj] = cijr Ky

which is called the isometry algebra.

For KY forms w which satisfy Vyw = ;Tlrﬁ xdw, we can define the Schouten-
Nijenhuis (SN) bracket [, Jsn.
For a p-form a and a ¢-form B, [, |sn is defined as follows

[a,ﬁ]gN =ixeaAVx, [+ (—l)pqixaﬁ/\VXaa

and gives a (p 4+ ¢ — 1)-form.
For p=¢q =1, [, ]sn reduces to the Lie bracket of vector fields

[X,Y]=VxY -VyX , X YeTM
SN bracket satisfies the following graded Lie bracket properties

[, Blsv = (=1)™[B,q]
(1P Ve, [BA]svlsny + (D) PV[B, [y, alsn]sn + (1) Py, [a, Blsw]sn =0

where + is a r-form.

Do KY forms satisfy a Lie algebra under [, |sn?
For a KY p-form w; and KY g-form wsy; do we have the following equality?

1
Vx,|wi,wa|sy = ix,dlwi,walsn 6.1
orwnlsy = ——ix, dior, o] (61)
For LHS, we have
VXa [wl,wz]SN = VXQ (ixbwl A bewg + (—l)pqixbWQ A Vwal)

= Vx, ixwwi AVx,ws+ixew1 AVx, Vx,wo
—l-(—].)pquaiXbUJQ AN bewl + (—1)pinb(.U2 AN VXGVwal.

Here, we can use [ixs, Vx,] =0 and the KY equation

1
(p+1)(g+1)

1
+
q+

an [wl,LUQ]SN (ixbixadw1 /\idewg + (—l)pinbiXadWQ A ixbdwl)

_1)p4
1 Ixbws A VXaidewl

1iwal A VXaideWQ +

again by using Vx, ix, = ix,Vx, and from the integrability condition of KY

forms; Vx, dw = p;lea A ixew, we find

1 .. . .. .
Vx, |wi,wo]sny = m (ixvix,dw Nix,dws + (—1)Pixsix, dws Aix,dwr)

1 _ ' (—1)Pe
—l—;szwl Nix, (Req Nixews) +

txbowa Nix, (Rca Nixewr) .
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For the RHS of (6.1)

. I . .
ZXad[WhCUZ]SN = ix,d (Zxawl ANV x, wa+ (—1)pq’anw2 AN anwl)

p+gq p+q
from the properties d(a A 8) = da A B+ (—1)PaNdB, ix(aAB) =ixa A+
(=1)?’a AixpB and [Vx,,d] =0 in normal coordinates, we have

1
ixad[wth]SN (ixbixadwl A\ ixdeQ + (—1)pinbiXadw2 A\ idewl)

P+q CEICESD)
(~1)P

pq

> (ixbwl A Rep A chwg) .

In general, we do not have the equality (6.1).

However, for constant curvature manifolds R,, = ce, A ep, the curvature terms
are equal to each other and we have the equality (6.1).

So, KY forms satisfy a Lie superalgebra in constant cuvature manifolds;

tE=f oty

The even part €y corresponds to odd degree KY forms
The odd part €; corresponds to even degree KY forms.

[,]sn : 8 x g —> € (if p and ¢ odd, then p+ ¢ — 1 odd)

[,]sn : 8 xt — €& (if p odd and g even, then p 4+ ¢ — 1 even)
[,]sn : 8 x& — €& (if p and ¢ even, then p+ ¢ — 1 odd)
and [, |sn satisfies the graded Jacobi identity.

From the integrabilty condition of KY forms Vx, dw = prlea Aixsw, the
second and higher order derivatives of KY forms can be written in terms of
themselves.

By using the integrabilty condition of KY forms, the maximal number of KY
p-forms in n-dimensions can be found by counting the independent degrees of
freedom of w and dw as

5= ) ()= (i) = o

and this number is achived in constant curvature manifolds.
So, the diemsnion of the KY superalgebra is (Kyqq|Kevpen) where

L3] 25+

n+1 n+1
Kodd = ( 2% > and Ke'uen = Z < 2%k + 1 )
k=1

k=1
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i) Conformal Killing-Yano superalgebra
Conformal Killing vector fields also satisfy a Lie algebra w.r.t. the Lie
bracket of vector fields
[Ci, Cj] = fijuCh
which is called the conformal algebra.
For CKY forms w; Vxw = plﬁixdw — X A dw, we can define the CKY bracket

[a ]CKY-
For a CKY p-form w; and a CKY g¢-form wo, [, |cky is defined as

—1\p
[wl,WQ]CKy q+1ixaw1/\ixadw2+ +1ixadw1 /\iXaWQ
(=1 1
——— w1 A b —— 0wy Aws.
+n—q+1w1 w2+n—p+1w1 w2

Note that it is different from the SN bracket, but a slight modification of it.

[, Joxy satisfies the graded Lie bracket properties.

For a CKY p-form wy and a CKY g¢-form ws, [w1,ws]cky is a CKY (p+¢—1)-
form, i.e.

ix,dwi,w2]ory — eq N Olwi, waloky

Vx, |wr,w = - -
X, w1, w2]oxy ptaq n—p—_gq+2

in constant curvature manifolds and in Einstein manifolds for normal CKY forms
(see U. Ertem, Lie algebra of conformal Killing-Yano forms, Class. Quant. Grav.
33 (2016) 125033).

So, CKY forms satisfy a Lie superalgebra in these cases,

c=c¢ Dy
The even part ¢g corresponds to odd degree CKY forms
The odd part ¢; corresponds to even degree CKY forms
[, Jerxy 1 ¢0 X g — o

[,]CKYZCOXC1—>C1
[,]CKYZC1><C1—>C0

From the integrability condition of CKY forms —P5ddw + nﬁ;ildéw =P, A
ixaow + Rap N ixaixsw, the counting of the independent degrees of freedom of
w, dw, dw and ddw gives the maximal number of CKY p-forms in n-dimensions

(which is achieved in constant curvature manifolds)

Cp:2<z>+<pil >+(p—7-1>:<Zif):(p+1()7(:f);+l)!

So, the dimension of the CKY superalgebra is (Coqq|Ceven) where

Lnfl

L3)

2 2 2
Codd = Z ( n;}; > and Cepen = Z ( 2nk—:_ 1 )
k=1

k=1
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All KY forms are CKY forms at the same time and the number of CKY p-forms
that do not correspond to KY p-forms is given by

(n+2) [(n+1)_  (n+1)
Cp_Kp_(p+1> (p+1>_p!(n—p+1)!
6.2 Extended superalgebras

i) Killing superalgebras
We can define a superalgebra structure by using Killing vectors and Killing
spinors

t=f oty

The even part €y corresponds to Lie algebra of Killing vector fields
The odd part £; corresponds to the set of Killing spinors
The brackets of the superalgebra is defined as follows;
The even-even bracket is the Lie bracket of Killing vector fields
[, ] : EO X Eo — EO
(K1, K2) v+ [Ki, Ky

The even-odd bracket is the Lie derivative on spinor fields

£ZEOX¥31 — El

The odd-odd bracket is the Dirac currents of Killling spinors

(Mhr:tixty — &

(1, ¢) — (WVP)1 = Vys

The Jacobi identities correspond to

(K1, K2, K3]] + [K», [K3, K1]] + [ K3, [K1, K2]] =0
(L5, L0 = LK, K1Y

Lix(Wd) = (Lx¥)p+ (LK)

"Ewa =0

The first three identities are satisfied automatically from the properties of the
Lie derivative, but the last one is not satisfied automatically.

For manifolds on which the last identity is satisfied, Killing superalgebra is a
Lie superalgebra.

We can extend this superalgebra structure to include higher-degree KY forms
in constant curvature manifolds,

EZEo@El
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The even part €y corresponds to the Lie algebra of odd KY forms
The odd part € corresponds to the set of Killing spinors

The brackets of the extended superalgebra are defined as follows;
The even-even bracket is the SN bracket of KY forms

[,]SN:E()XEO — EO
(w17w2) — [UJ17W2]SN

The even-odd bracket is the symmetry operators of Killing spinors

LZon%l — El

@) — Lot = (ixew) Vx, ¥ + 5

7(p+ 1)dw.¢

The odd-odd bracket is the p-form Dirac currents of Killling spinors

()p : El X El — EO

The Jacobi identities are

[wi, [wa, w3]sn]sn + (w2, (w3, wi]sn]sn + [ws, w1, wa]sn]sn =0
(Lo s Liso ]t = Lieoy o] sn ¥

[w, (Wd)]sn = (Lut))d + (Lud)

Ly, =0

The first identity is satisfied from the properties of the SN bracket, but the last
three identities are not satisfied.

So, € is a superalgebra in constant curvature manifolds, but not a Lie superal-
gebra.

For n < 5, we can also define a new bracket for KY forms (p-form w; and ¢-form

w2)5

= L[MM&]SN -
ptqg—1 p+q

(w1, w2l Ky lixatnpwi,ix, ix,w]sn

which is a Lie bracket and satisfies the second Jacobi identity
[quszW = L[wl,wz]Kyw

(see U. Ertem, Symmetry operators of Killing spinors and superalgebras in
AdSs, J. Math. Phys. 2016)

ii) Conformal superalgebras
We can define a superalgebra structure by using conformal Killing vectors and
twistor spinors,
c=c¢gD g
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The even part ¢g corresponds to the Lie algebra of conformal Killing vectors
The odd part ¢; corresponds to the set of twistor spinors

The brackets of the superalgebra are as follows;

The even-even bracket is the Lie bracket of conformal Killing vector fields

[, ] ¢ X€¢ — €
(01,02) — [01702]

The even-odd bracket is the Lie derivative on twistor spinors
1
£ — 5/1, ¢ XC€p —

1
(C¥) — Lov—suv
The odd-odd bracket is the Dirac currents of twistor spinors

()1 ¢ X¢p — €
(¥, 9) — (W) = Vi
The Jacobi identities are not satisfied automatically.

We can extend this superalgebra structure to include higher-degree CKY forms
in constant curvature manifolds or Einstein manifolds with normal CKY forms

C=1¢y Dy

The even part ¢g corresponds to the Lie algebra of CKY forms (or normal CKY
forms)

The even part ¢ corresponds to the set of twistor spinors

The brackets of the extended conformal superalgebra are defined as The even-
even bracket is the CKY bracket of CKY forms

[,]Jeky :cGo X — ¢
(wi,w2) w1, wa]oky
The even-odd bracket is the symmetry operators of twistor spinors

LIE()XEl — 1

_ (s p
(w, ) +— Lw¢—(lxaw)~vXa¢+m

The odd-odd bracket is the p-form Dirac currents of twistor spinors

p
dw.
w1/1+2

W pr )Y

()p 10 X6 —> Eo
¥, 0) +— (Vo)

The Jacobi identities are not satisfied automatically.
So, © is a superalgebra in constant curvature manifolds (or in Einstein manifolds
with normal CKY forms), but not a Lie superalgebra.
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Lecture 7

Harmonic Spinors from
Twistors

7.1 Twistors to harmonic spinors

Let us start with a twistor spinor 1) which satisfies V x 1 = %)? D, and consider
a function f which is a solution of the conformally generalized Laplace equation
in n-dimensions;

n

—2
N e

where A = —dd — dd is the Laplace-Beltrami operator and R is the curvature
scalar.
We can define an operator

n

—2rp ot df

Ly = -

and the action of this operator on a twistor spinor gives a harmonic spinor, i.e.,
we have L = 0. This can be seen as follows

DLy = ".Vx, (”;prwdf.w)

= e (n;Q(VXAf)de + 2 ; ZfVX(lﬂllj + Vx, df 1 +df~VXa"/}>

n

= "2yt P2 D ddf + et df N x,0

n n

n

where we have used e®.Vx, f = (d—8)f = df, e*.Vx, Db = P*p and e*.Vx, df =

ddf.
Since f is a function; 6f = 0, df = df and ddf = —ddf = Af (since d* = 0).
From the twistor equation and the integrability condition of twistor spinors
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n
Py

n—2
n

R, we can write

n

(df.m - TR fw) +Afap+ %e“.df.ea.pw.

DLy = =1

We know that f satisfies generalized Laplace equation and we have the property
e*.a.eq = (—1)P(n — 2p)a for a p-form a. So, we have

DL = (Af - _21)Rf) b =0

(n

Can we generalize the operator Ly to higher-degree differential forms?
We propose the following operator for a p-form « and an inhomogeneous Clifford
form §;
Lo=a.D+Q.

In which conditions we can have a harmonic spinor by applying L, to a twistor

spinor ¥, i.e., DLy = 07
We can calculate explicitly as

@Loﬂﬁ = ea-VXaL(M
= e’ Vx,aDy+e*.aVx, DY+e*'Vx Qip+e*QVx, .

From the definition ¢ = €*.Vx_, twistor equation and the integrability condition
Vx, DY = gKa-¢, we can write
n 1
DLy = da. D+ 56“.0[.[@.1{1 + dQ.p + Eea.Q.ea.ﬂw

—2I1
n

nQ) Do+ (dQ n %ea.a.Ka) .

Here we have used e*.Q.e, = (n — 2I1)nQ2 where IIQ = e Nix, Q.
Hence, if L,% would be a harmonic spinor, then we have two conditions

n — 211

do + nQ 0 (7.1)

d’Q—l—gea.a.Ka = 0. (7.2)

As a special case, in even dimensions n = 2k, we can choose () as a k-form
(middle form) and (7.1) gives da = —da and this can be possible for a = 0
since « is a homogeneous p-form. In that case, (7.2) gives that 2 is a harmonic
form; d2 = 6Q2 = 0.
So, in even dimensions, for a harmonic middle form 2 and a twistor spinor v,
Q.1 is a harmonic spinor.

In general, if we choose « a non-zero p-form, then (7.1) gives that {2 is a sum
of (p+1) and (p — 1)-forms. So, we have from (7.1)

(=1)Pn (=1)Pn

T e T s 8
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By applying the Hodge-de Rham operator ¢ = d — §
(=1)Pn (=1)Pn

A= an(p+l)dda_n—2(pfl)d6a
_ (=1)Pn (=1)Pn
B TR M T Vi

and by substituting in (7.2), we have

1) _1)p
(=1) oda + (=1) déa = 16“.04.Ka.
n—2(p+1) n—2(p-—1) 2

From the definiton K, = —15 (2(%_1)6,1 - Pa), the RHS can be written explic-

n—2

itly as

n+2(p—1)

2 — 1) —2) **

2 .
e.a.K, = (—l)mea Nixaea — (—1)P

So, we obtain

1 1 1 op— 1
Sdo+ oo = P nixea — 20D

n—20p+1) n—20p—1) n—2 i —1)m=2) ¥

A p-form « that satisfies this equation is called as a potential form. Because, in
even dimensions, for p = § — 1, a is a potential form for middle-form Maxwell
equations and for p = 5§ + 1 it is a co-potential form for the same equations.
For p = 0, potential form equation reduces to the conformally generalized
Laplace equation. So, it is generalization of the conformal Laplace equation.

Then, we obtain that for a potential p-form « and a twistor spinor

Lov =apy il

DT ) L T

o)
is a harmonic spinor.

Remember the symmetry operators of twistor spinors which are defined in
terms of CKY forms in constant curvature manifolds and normal CKY forms in
Einstein manifolds;

P P P
L, = —(—1)P2y. d 5
( )nwE+2(p—|—l) Yo

and the symmetry operators of harmonic spinors (massless Dirac equation) in
terms of CKY forms
n—
P L)

Lo = (aew) Vx, + 2(p+ 1)dw S 2n—p+1)

So, we have the following relations

L,
twistor spinors ——————— > twistor spinors

CKY forms
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L,
twistor spinors ———————— harmonic spinors
potential forms

Lo,
harmonic spinors ———— harmonic spinors
CKY forms

7.2 Gauged twistors to gauged harmonic spinors

We consider a manifold M with a Spin¢ structure which means that we can
lift the complexified bundle SO(n) xz, U(1) to Spin®(n) = Spin(n) xz, U(1) =
Spin(n) x U(1)/Zs.

Note that Spin®(n) C Cl(n) ® C = CI°(n) is a subgroup of the complexified
Clifford algebra.

In that case, we have the Spin® spinor bundle £°M = M xz, U(1) and the
connection on LM consists of two parts; the Levi-Civita part on XM and the
U (1)-connection part.

The gauged connection V on $¢M is written as follows

Vx=Vx+ixAd , XeTM.
Gauged exterior and co-derivatives are defined as
d=e*AVx, =d+ AN
0= —ixaVx, =0 —iz

where A is the vector field corresponding to the metric dual of A.
However, unlike the case of d?> = 0 = §2, we have

d? = FA
6% = —(ixaixs Fix, ix,

where F' = dA is the gauge curvature.
The gauged Hodge-de Rham operator is

Jod-F—d+A

Gauged curvature operator is
R(Xa, Xy) = [Vx.,Vx,] - ﬁ[xa,xb]
R(Xa, Xp) —ix,ix, F

and the gauged Dirac operator acting on X°M is written as

@:e“.ﬁxa:E)—kA
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~2 ~
and its square is equal to p~ = V2 — iR + F.
We can define the gauged twistor equation

. 1 -
Vx, = ﬁea.pl/)

and the gauged harmonic spinor equation

Dy =0.
The integrability conditions of gauged twistor spinors can be obtained as
~2 n n
= —_— R Fu
by 4(n—1) w—i_nfl v
~ ~ n n n
\Y% = —Ki¢— ——F——e,.F. —ix, F.
x.P¥ g Rt = gy e Y T g Y
Cawpv = 2(ix,ix,F)Y+ — (epix, F —eqix, F) .4
+$e ep.Flap
(n_l)(n_z) a-Cp.- LW,

In constant curvature manifolds, we have Cy, = 0 and the existence of gauged

twistors implies F' = 0.

So, we can have gauged twistor spinors w.r.t. flat connections (A # 0 and

F =0).

Symmetry operators of gauged twistor spinors can be constructed from CKY

forms in constant curvature manifolds. For a CKY p-form w
T _ 1\l 7 p p
L,=—-(-1) nw.E—&— 2(p+1)dw+ 3 —p+1)

ow

is a symmetry operator, i.e., we have @Xu Eww = %ea.@/L\ww for a gauged twistor
spinor .
(see U. Ertem, Gauged twistor spinors and symmetry operators, J. Math. Phys.
58 (2017) 032302)

Symmetry operators of gauged harmonic spinors can be constructed from
gauged CKY forms which satisfy

1 ~ 1 ~ -
ixdw — —— X A dw
1 n—p+1
for any X € TM. Symmetry operators are written in terms of a gauged CKY
p-form as

VXUJ:

~ . ~ p ~ n—p ~
Ly, = (ixaw). + dw — ow
o = e Vx o ™ T 2 —p 4 D)
i.e, for a harmonic spinor v, we have ﬁfwzﬁ =0.
We can also construct transformation operators between gauged twistor
spinors and gauged harmonic spinors.

For a function f that satisfies the generalized gauged Laplace equation
~ n—2 n—2
A 1 — RIf=0
(=)
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we can construct the operator (where «y is a real number)

~ n—2 ~ ~
Ly = fD+df

n

which transforms a gauged twistor spinor ¢» with the property F.¢) = vy to a
gauged harmonic spinor, i.e., PLs1p = 0.
For a gauged potential form o which satisfies

1 PN 1 - 1 ) n+2(p—1)
————4d déa = PyANixaao — ———R
n—2(p+1) O[Jrn—Q(p—l) OT p g Aanxea 4n—1)(n—2) “
the operator

~ ~ —1)P ~ —1)Pn -~
Lo =a.pD+ (=1)"n da — (=1)n
n—2(p+1) n—2(p-—1)

transforms a gauged twistor spinor 1 to a gauged harmonic spinor in constant
curvature manifolds, i.e., DL,y = 0.

(see U. Ertem, Harmonic spinors from twistors and potental forms, arXiv:1704.04741)
So, we have the following diagram in constant curvature manifolds

~

L,
gauged twistor spinors ———————> gauged twistor spinors
CKY forms
Lq
gauged twistor spinors gauged harmonic spinors

gauged potential forms

L.,
gauged harmonic spinors gauged harmonic spinors
gauged CKY forms

7.3 Seiberg-Witten solutions

Let us consider a 4-dimensional manifold M.

Every compact orientable 4-manifold has a Spin® structure.

In four dimensions, we have XM = XTM ® X~ M.

For a spinor ¢ € X7 M, Seiberg-Witten (SW) equations are written as

Dy = 0
(W) = FT

where F'* = 1(F + *F) is the self-dual curvature 2-form.
So, the solutions of the SW equations are gauged harmonic spinors with a
condition on 2-form Dirac currents.
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We obtain gauged harmonic spinors from gauged twistor spinors in constant
curvature manifolds.
In that case, we have F' = 0 (with A # 0), and the second SW equation turns
into

(ip)2 =
This is not a very restrictive condition since we can automatically satisfy this

condition by choosing symmetric spinor inner product, i.e., (¢, ¢) = (¢, 1)) for
Y, € XM

W) = (b, epcatd)e” Ae”
((ep-ear)” 4, 9p)e" A e
—(ep.eq.1h,1)e® A e
— (¢, ep.eqp)e A el
= 0

where we have used that the choice of involution J = £ or £n gives the same
sign (ep.eq.)? = —ep.€q.

By starting with a gauged twistor spinor v, we can construct gauged harmonic
spinors from gauged potential, gauged CKY and CKY forms (o, @ and w)

~ ~ o~ ~ o~ ~

Lot , LoLat , Lolo , LoLaLlo).

If they have vanishing 2-form Dirac currents (which is automatically true for
symmetric spinor inner product), then we obtain SW solutions w.r.t. flat con-
nections in constant curvature manifolds.

So, we have the relation

Lq
gauged twistor spinors gauged harmonic spinors
gauged potential forms

flat connection
gauged harmonic spinors SW solutions

vanishing 2-form Dirac current
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Lecture 8

Supergravity Killing
Spinors

8.1 Bosonic supergravity

Supergravity theories are supersymmetric generalizations of General Relativity
in various dimensions.
A supergravity action S consists of bosonic (¢;) amd fermionic (t);) fields;

S = bosonic (¢;, Vi, ...) + fermionic (¢, Vb, ...)

Bosonic part corresponds to gravitational and gauge field degrees of freedom
(graviton (metric), p-form fields, etc) and fermionic part consists of matter
degrees of freedom (gravitino (spin-% Rarita-Schwinger field), gaugino, etc).
Supersymmetry transformations relate the bosonic and fermionic fields to each
other.

For a spinor parameter €, supersymmetry transformations are in the following
form

Sp = e (8.1)
oy = (V+[f(9))e 8.2

where ¢, denotes the variation of the field.

When we take the fermionic fields to be zero, we obtain bosonic supergravity
whose solutions give the consistent backgrounds of the theory.

When ; — 0 we have §.¢; = 0 automatically, and d.¢ = 0 gives a constraint on
the spinor parameter € that is (V + f(¢)) e = 0 which is called the supergravity
Killing spinor equation.

So, to obtain a consistent supergravity background, besides the field equations
of the theory, we must also solve the supergravity Killing spinor equation.
There are various supergravity theories between the dimensions 4 and 11;
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D (dimension) N (number of susy generators)
4 1,2,3,4,5,6,8
5 2,4,6,8
6 (1,0), (2,0), (1,1), (3,0), (2, 1), (4,0), (3, 1), (2,2)
7 2.4
8 1,2
9 1,2
10 1(type I + heterotic), 2(type ITA + IIB)
11 1(M)

10 and 11 dimensional supergravity theories correspond to low energy limits
of string and M-theories, respectively.

D =6, N = (1,0) bosonic supergravity action is

1
S:K‘,/ <Rub/\*(ea/\eb)—2H/\*H>
where H is a 3-form field.
The field equations give the Einsteni field equations and the conditions dH = 0
and H is anti-self-dual.

Variation of the gravitino field (Rarita-Schwinger) in the fermionic action gives
the following supergravity Killing spinor equation

1
Vxe+ ZixH.E =0.
D =10, type I and heterotic theories also give the same spinor equation.

However, in those cases one also have the extra algebraic constraints due to the
existence of extra gaugino fields;

1
FQ.E = 0
where ¢ is the scalar dilaton and F; is a 2-form gauge field.

D = 11 bosonic supergravity action is
b 1 1
S =k Rap A *(e /\e)—iF/\*F—gA/\F/\F

where F' = dA is a 4-form gauge field.
Nothe that the first term is the gravity action, the second term is the Maxwell-
like term and the third term is the Chern-Simons term.
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The field equations of the theory are given by

1 1
Ric(X,Y)x1 = §iXF A xiy F — EQ(X’ Y)F A xF
dxF = %F/\F

where X,Y € TM and Ric is the Ricci tensor.
Variation of the gravitino field gives the following supergravity Killing spinor
equation

1. 1,5
Vxe+ EZXF-G* E(X/\F).e:O

which can also be written in the form
1 /~ ~
Vxet oo (X.F - 3F.X) =0,

D = 5 supergravity has a similar structure with the coeflicient i is replaced
i 1 i _
by the coefficient YW and F is a 2-form.
We can also define a supergravity connection

§X =Vx + i ()Z—F—?)F)?)

to write the supergravity Killing spinor equation as a parallel spinor equation
v xe=0.

In D =11, we can search for the solutions of type My, = My x Ms.
So, the metric is in the form of ds?; = ds3 + ds?.
Co-frame basis, 4-form field F' and the spinor parameter € are decomposed as

e“ze”@ei , F=F®F; R €=¢€4 R ey

where p =0,1,2,3 and i = 4,5, ..., 10.

To have M, as Minkowski space-time, we can choose the ansatz F' = 0.

Field equatios give M7 as a Ricci-flat manifold and the supergravity Killing
spinor equation reduces to parallel spinor equations Vxeys = 0 = Vxer. So,
M7 is a Ricci-flat 7-manifold with a parallel spinor which is a Ga-holonomy
manifold.

Namely, we have

M1 1= M4 X M7
~—~ ~—~
Minkowski  G3-holonomy

If we choose F' = A\z4 ® F7 where A is a constant, z4 is the volume form of
My and F7 is a 4-form on My which satisfies (resulting from the field equations)

dF; = 0
5F7 = —C*F7 (83)
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with ¢ is a constant. Indeed, these conditions say that F7 is a special CCKY
form.

This choice gives that M, and M7 are Einstein manifolds with M, corresponds
to AdSy space-time, and supergravity Killing spinor equation reduces to Killing
spinor equations on M, and M7.

This means that My is an Einstein 7-manifold with a Killing spinor which is a
weak Ga-holonomy manifold.

So, we have

M11 = M4 X M7
~~~ ~~
AdSy weak G2-holonomy

For AdS4 x S7 solution, we need to choose Fy = 0.
(see Duff, Nilsson and Pope, Kaluza-Klein supergravity, Phys. Rep. 130 (1986)
1)
Similar procedures can be applied to other dimensions and supergravity theories.

8.2 Supergravity Killing forms

We can analyze the equations satisfied by the spinor bilinears of supergravity
Kiliing spinors.

For the six dimensional case, we have the supergravity Killing spinor equation

1
VXe = —*ixH.e.

4
The covariant derivative of the spinor bilinears (€€), can be calculated as
Vx(eg)p = ((Vxé>€>p + (G(VXe))p

_i (ixH.€€), — i (e(iXH.e))p

1. _ 1, _
= _Z(ZXH-ﬁe)p+1(5€-ZXH)p

where we have used iy H.e = €(ix H)Y = —€ixH for J = ¢ or &n since ix H is
a 2-form.
So, we have

—_

Vx(e@)y = —7(lixH, ea),
1. _
= —lixH (@)
since the Clifford bracket of any form a with a 2-form ix H, we have the equality

lixH,olcr = —2ix,ixH Nixaa.
The equation satisfied by spinor bilinears reduces to the Killing equation for
p=1

1

Vx, (€)1 = 1 lix,H, (€€)1]cu

1
= §Z’XbiXuH/\7f'Xb(€E)1

]



by taking wedge product with e®, we have
d(e€); = e*AVx, (€€)1
= %ea/\ixbiXaH/\iXb(eE)l
= —ix,H Nix(€€);.

Comparing the last two equalities, we obtain

1, _
Vx, (€)1 = ilXad(fe)l

which is the Killing equation. This means that Dirac currents of supergravity
Killing spinors are Killing vector fields.
However, for higher-degree Dirac currents, we have the equation

1.
VXw = —Z[’LxH, w}cz

which is different from the KY equation. For example,

1. _ 1 .,
VX(EE)g = §Zxd(6€)3 + E[H’ Zx(€6)3}(jl.

So, we obtain another type of generalization of Killing vector fields to higher-
degree forms different from KY forms. These forms will be called as supergravity
Killing forms.

Supergravity Killing forms have a Lie algebra structure under the Clifford
bracket. Namely, if wy and wq are supergravity Killing forms, then [wy,ws]c; is
also satisfies the supergravity Killing form equation.

This can be seen as follows

Vxlwi,woor = [Vxwi,woler + [wi, Vxwa]er
= —i[[iXH,wl]Cl,wg]cl - i[wl, [ix H, wa]cilct
= —i[iXH.wl,wg]cz + i[WLZ‘XH;wZ]Cl
71[w1,z‘XH.w2]cz + i[wl,WQ-iXH]Cl
= 73 (ix Hwi.wy +wrwrixH —ixhws.wi —wi.wy.ixH)
= 7i[z‘XH, (w1, walci]ci-

Since the Clifford bracket is antisymmetric and satisfies the Jacobi identity, su-
pergravity Killing forms have a Lie algebra structure.

Since the supergravity Killing forms of ten dimensional type I and heterotic
theories are defined from the same supergravity Killing spinor equation, they
also have the similar Lie algebra structure.
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In ten-dimensional type ITA supergravity, the supergravity Killing spinor

equation is
1 1 1 =~
Vxe= _ZiXH'E - ged’iXFg.e + §e¢(X N Fy).e

where ¢ is the dilaton scalar field and F5 and Fj are 2-form and 4-form gauge
fields.
The supergravity Killing forms satisfy the equation

1 ~
Vxw=—2 ([2iXH +ebixFy — e?X A F4,w]0l)

where w is an inhomogeneous form.
Solutions of this equation also have a Lie algebra structure under the Clifford
bracket.

In eleven-dimensional supergravity, the supergravity Killing spinor equation
is

1 ~ ~
Vxe= 5 (X.F —3F.X).c

The equation satisfied by the spinor bilinears can be found as

Vx(@), = (Vxe)o), + ((Vxe)),
_ _i ((x.F- 3F.)?).ez)p - i (e(X.F - 3F.)?).e)p
_ _i ((x.F- 3F.X).ez) o (ez.(F.f( - 35(.F))p

where we have used (X.F — 3F.X).c = €. (X F-3F. X)j and by choosing J =
¢n and using (X.F)&" = F& X = —F X and (F.X)& = X Fé1 = —X F.
So, we have

_ 1 I
Vx (), = —5; {((X F—3F.X).ce ),, - (ee.(F.X - 3X.F))p}
by adding and subtracting - €e.(4F. X—4X.F)—Lee.(4F.X —4X.F), we obtain
I s S 1/ o
Vx(€@)y = —5 ([(X.F — 3F.X), ee]cz)p -5 (ee.[F, X]Cl)p

For p = 1, this reduces to the Killing equation and the Dirac currents of super-
gravity Killing spinors correspond to Killing vector fields.

However, for higher-degree forms it is again different from the KY equation and
we find another generalization of Killing vector fields to higher-degree forms.
So, the supergravity Killing form equation in eleven dimensions is

1.~ ~ 1 ~
wa = _ﬂ[(XF - 3F.X),UJ}CZ - éw.[F,X}CZ
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But, in that case, the solutions does not have a Lie algebra structure automat-
ically. We have

1

Vxwi,waler = *ﬂ[‘ﬁm (w1, w2]ci]cr — 6[W17w2]0l-\le

1
76(&]1.\1/)(.(,02 - w2.\IJX.w1)

where ®x = X.F —3F.X and Uy = [F, X]¢y = —2ixF.
If the condition
wl.\Ifx.ng = w2.\IfX.w1

is satisfied, then the Clifford bracket of the solutions is again a solution.

(for more details see 0. Acik and U. Ertem, Hidden symmetries and Lie algebra
structures from geometric and supergravity Killing spinors, Class. Quant. Grav.
33 (2016) 165002).
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Lecture 9

Spin Raising and Lowering
Operators

9.1 Spin raising and lowering operators

We consider massless and source-free field equations for different spins

-2
spin — 0 — Af — h’Rf =0 conformal Laplace equation
n —
1
spin — 3 — Dy =0 massless Dirac equation
spin — 1 — dF =0 source-free Maxwell equation

By using twistor spinors satsifying Vxu = %)N( .Pu, we can construct spin rais-
ing and spin lowering operators that transform solutions of spin-s field equations
to solutions of spin-(s + 1) field equations and vice versa.

i) Spin raising from spin-0 to spin—%
For a function f satisfying conformal Laplace equation and a twistor spinor wu,
we can construct a spinor

b = df-u+ ”T_pru.

We have shown in Lecture 7 that v is a harmonic spinor, namely it satisfies the
massless Dirac equation; Py = 0.
1

So, we transform spin-0 solution f to spin-5 solution ¢ via a twistor spinor u.

.. . . s 1 .
ii) Spin lowering from spin-5 to spin-0
In a reverse procedure, we can construct a function from a massless Dirac spinor

¢ and a twistor spinor u by using the spinor inner product (, ) as

f=(u9).
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We will show that f is a solution of the conformal Laplace equation. By applying
the LAplace-Beltrami operator A = V? = Vx, Vxa — Vv, xa, we obtain

Af = Vx,Vxa(u,9) = Vyy, xa(u,1))
Vx, (Vxau, ) + (u, Vxath)) = (Vyy, xaw,¥)) = (4, Vyy, xat))
(Vx,Vxau, ) + 2(Vxau, Vx, ) + (u,Vx, Vxat))
—(Vvy, xau,) = (u, Vyy, xat))
= (Vx,Vxau— Vv, xau,) +2(Vxaeu, Vx, 1)

+(u, Vx,Vxath = Vy xat))

= (Vu,¥) +2(Vxau, Vx,¥) + (u, V29).

The square of the Dirac operator is written as

1
P2 = V2 — R
for any spinor 1. So, we have

Awy) = (Put iRu,w +2(Vx,u, Vxat)) + (u, P70 + %m})

= (p2u7w) + 2(VXQ’LL, vX‘”v/}) + (u’ p2¢) + %R(Uﬂ/})

From the twistor equation Vx, u = %ea.ﬂ)u and the integrability condition of

twistor spinors P?*u = — Ru, we can write

n
4(n—1)
-2
A(u, 1) = h
From the identity (eq.Du, Vxath) = (Pu, (eq)? .V xath) = £(Pu, Ptp) and since

1 is a massless Dirac spinor v = 0, we have

M) = 1=

R ) + 2 (e0.Pu, Vxeth) + (0, D)

R(u,) =0

which means that f = (u,1) is a solution of the conformal Laplace equation.
So, we transform the spin—% soluition v to spin-0 solution f via a twistor spinor
u.

We can also construct symmetry operators of massless Dirac spinors by first
applying spin lowering procedure from é — 0 and then applying spin raising
procedure from 0 — 1.

These operators are equivalent to the symmetry operators of massless Dirac
spinors constructed in Lecture 5.

iii) Spin raising from spin—% to spin-1

In even dimensions n = 2p, we can construct a spin-1 quantity from a twistor
spinor u and a massless Dirac spinor 1;

- _9 _ _
erb.u®VXb¢+nTpu®¢+¢®pu~
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Only the p-form component of F' will be important for us.
By applying the Hodge-de Rham operator

dF = €a.VXaF

- o _9 _

= ea.<€b.VXau X VXbQ/J + ePu (24 VXGVdeJ + HTVXapu R
_9 _ .
+Pus Vx, B+ V@ Pu+ v @ anpu>

_ P | _
— ea.eb.VXau®VXb¢+ea.eb.u®vxavxbw—|—Tﬁ2u®w

n—2

+ " DuxVx, 0+ D@ Du+e*yp @V, Du

where we have used the normal coordinates and the definiton of the Dirac op-
erator ) =e".Vyx,.
From the Clifford algebra identity e®.e? + e?.e® = 2¢?®, we can write

e VxuaVx,h = (2¢°° —e’e?).Vx,u® Vx, ¥
= 2Vx,u®Vxath —e* Pu® Vx, v
n—2 -

= - e’ PueVx,
since w is a twistor spinor Vx u = %ea.l)u and by using P = 0, we have
JF = e*.tu®Vx Vx, b+ nT_2W®$+e“.w®m
= ("Ne")udVx, Vx, ¥ +u® Vx, Vxath
"2 pus et o Vx, Pu

+

where we have used e®.e® = e A el + 0y. By antisymmetrizing the first term
and from definition of the curvature operator and the Laplacian, we can write

1 [ _
JF = 5(ea Ae?)u® R(Xa, Xp)th 4+ u @ V2

_9 _ .
+nTjD2u @Y + e @ Vy, Pu.
1
From the identities R(X,, Xp)® = %Rab.w and P2 = V) — 17%1/), we obtain

1 — 1 —
JF = 1(ea Ae’)u® Rapth + JRu®y
n—2_, - a < 7.
+Tp uY+e* P @Vy, Pu
From the pairwise symmetry of the curvature tensor Ripeq = Redap, We can

write
(e Ae®).u® Rapt) = Rapuu ® (e A €b).1h.
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The integrability conditions of twistor spinors give that R,p.u = % (er.Vx, Pu—e,.Vx,Du)

and P?%u = 74(71771_1)72% So, we have
1 —_— 1 —_ -
dF = o (er.Vx,Du—e,.Vx, Pu) ® (e® Neb).p + m?’{u RY+e* Y@ Vx, Pu
1 - 1 _ -
= —e,.Vx, Du® (e®.eb —ebe?)p + ————Ru® ¢ +e*p @ Vx, Pu
2n 4(n—1)
1 -1 _ 1 _ -
= ——e.Vx,Pu®ebernh+ —Pu@th+ —Ru® +e*9p @ Vx, Pu
n n 4(n—1)
1 -
= _5eb.vxapu ®ebetahp+e* ) @ Vx, Pu
where we have used e® A e = e®.e® — 6% and e®.e® = —el.e® 4 29?0,

In n = 2p dimensions, the identity (¢ ® )¢ = (=1)l"/2l¢ ® ¥ corresponds to
1 ® 1) = ¢ ® 1 for the p-form component. Then, we can write

er.-Vx, Du@eberta) = e (anpu ® eb.e“.d))
= ep. (eb.e“.w ® anl)u)
= epele Y ® Vx,PDu
ne®.p ® Vx, Pu
and this gives the result ¢F' = 0.

So, we obtain a middle-form source-free Maxwell solution F' from a massless
Dirac spinor ¢ via a twistor spinor wu.

iv) Spin lowering from spin-1 to spin—%
In a reverse procedure, we can find a massless Dirac spinor from a middle-form
source-free Maxwell solution F' by using a twistor spinor u.
Let us define
Y= Fu

By applying the Dirac operator

DY = "y, (Fu)
= e“.VXaF.u+e“.F.VXau

1
= JFu+ —e*.F.eq.Pu
n

where we have used the definition of Hodge-de Rham operator and the twistor
equation.

Since F' is a source-free Maxwell field, we have ¢F = 0 and for a p-form in
2p-dimensions we have e*.F.e, = (—1)P(n — 2p)F = 0. Then, we obtain

Py =0.

We can also construct symmetry operators for source-free Maxwell fields by
applying spin lowering from 1 — % and spin raising from % — 1.
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9.2 Rarita-Schwinger fields

We consider spinor-valued 1-forms representing spin—% particles.
For a spinor fields ¥, and the co-frame basis e®, we define the spinor-valued
1-form as

U =1, Qe

Action of a Clifford form « on ¥ is defined by
a¥l = ay, ®e.
Inner product of a spinor-valued 1-form ¥ and a spinor w is defined by

(u, ¥) = (u,1q)e’.

We can also define the Rarita-Schwinger operator acting on spinor-valued 1-
forms

D = e“.VXa .
From these definitions, the massless Rarita-Schwinger equations of spin—% fields
in supergravity can be written for ¥ = ¢, ® e as follows

Dy = 0 (9.1)
e’ P, = 0. (9.2)
The first one can be seen as the generalization of the Dirac equation to spin—%
fields, and second one is the tracelessness condition.
These equations imply a Lorentz-type condition

vX‘”/}a =0.

i) Spin raising from spin-1 to spin—%
We construct a massless Rarita-Schwinger field from a source-free Maxwell field
and a twistor spinor.
For even dimensions n = 2p, we propose the following spinor-valued 1-form from
a p-form Maxwell field F' and a twistor spinor u

1
U= (VX(LF.u — F.ea.pu> ® e (9.3)
n

where we have 1, = Vx, Fu — %F.ea.pu.
To check the tracelessness condition, we calculate e®.1,

1
ey = ea.VXQF.u—Eea.F.ea.Eu
—2
= Fu— (1P Prpy
n
= 0
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where we have used ¢F = 0 and e*.F.e, = (—=1)?(n — 2p)F = 0 since F is a
p-form.
By applying Rarita-Schwinger operator to W,

1
pr = Vg, [(VXQF.U - nF.ea.pu> ® ea]

1 1
(d’VXaF.u + e’ Vx, F.Vx,u— EdF.ea.pu — neb.F.ea.VXbEu) ® e

1
(dVXaF.u - 2eb.F.ea.Kb.u> ® e

where we have used ¢F = 0, the twistor equation Vx,u = %eb.pu and the

integrability condition Vx, Pu = %Kb.u.

1
The identity [¢, Vx,|F = —’.R(X4, Xp)F = —§eb.[Rab, Flcy gives

1 1
M\P = <26b-[Rab7F]Cl-U — 2€b-F-6a-Kb-u> ® e”.

We can write Ry, = Cup + €. K, — €4.Kp in terms of conformal 2-forms and
Schouten 1-forms and by using the integrability condition of twistor spinors
Cup.u = 0, the identity e’. Ry, = P,, we obtain

1
]D\I’ - (2Pa.Fu - 6b-F~ea'Kb'u> ® ea_

Then, to have a massless Rarita-Schwinger field, the condition

P, Fu= Zeb.F.ea.Kb.u

must be satisfied. From the definition K, = ﬁ (ﬁea — Pa> and Clifford

multiplying with e® from the left, this turns into

where we have used e®.P, = R, e%.eq = n, e®.e® = —eb.e“+2g“b and e*.Fl.e, = 0.
So, from a p-form source-free Maxwell field F' and a twistor spinor u which
satisfies the condition

Fu=0

we can construct a massless Rarita-Schwinger field ¥ as in (9.3).

ii) Spin lowering from spin-% to spin-1

In four dimensions, we can also construct a source-free Maxwell field from a
massless Rarita-Schwinger field via a twistor spinor satisfying a constraint.
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Let us define a 1-form A from a mssless Rarita-Schwinger field ¥ = ¢, ® e® and
a twistor spinor u as

A= (u,T) = (u,1,)e’.

We consider the 2-form F' = dA which can be written as
F = d(u,7)

1
E(eb-puv ’(/}a) + (U, Vwaa) eb Aet

by using d = e® A Vx,_ and the twistor equation.

Since I is an exact form, we have dF' = 0. So, the action of Hodge-de Rham
operator gives

dF = dF —6F
= iXaVXaF.

From a direct calculation by using the properties of the inner product and the
Rarita-Schwinger equations, we can find

I = | (Vo Puset i)~ —(Vx, D q.t)
+(u, Vx, Vo) — (u, Vx, Vx, %) .

n
The integrability conition of twistor spinors Vx, Pu = §Kb.u, the square of

1
the Dirac operator P? = V? — ZR and the identities e*.e, = n, e*.P, = R,

e K, = —ﬁ gives

n—3

dr = |(u, m

1
Rwa - iKlrea'wb - VXbVXawb):| e’
This means that, to obtain a source-free Maxwell field, v, of the Rarita-Schwinger
field has to satisfy

1 n—3
VXbVXalf}b = —*Kb.ea.l/}b +

2 4(n — 1)72%

which can be simplified by using Vx, Vx, 9" = Vx, Vi, 9" + R(X;, X.)¢" and
R(vaXa)¢b = %Rbaﬂﬁb with Vx, ¢* =0 as

n—3

b _
(Rpo + Kp.€q).9p” = =1

Ribg.

which is automatically satisfied in a flat background.

The symmetry operators can also be constructed by applying spin lowering and
spin raising procedures. (for details see O. Agik and U. Ertem, Spin raising and
lowering operators for Rarita-Schwinger fields, arXiv:1712.01594).
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Lecture 10

Topological Insulators

Let us consider a d-dimensional periodic crystal lattice.

Periodicity of the lattice results that the unit cell determines all the properties
of the whole lattice.

Fourier transform of the unit cell that is the momentum space unit cell corre-
sponds to the Brillouin zone (BZ) which is a d-dimensional torus 7 (from the
periodicity of the lattice).

In tight-binding approximation, energy levels of last orbital electrons deter-
mine the energy band structure of the crystal.
If there is a gap in energy leves (between valence and conduction bands), it
corresponds to an insulator.
If there is no gap in energy leves (between valence and conduction bands), it
corresponds to a metal.

The system is determined by the Bloch Hamiltonian H (k) with eigenstates
|un (k)) and eigenvalues FE, (k) (n corresponds to the number of bands);

H(E)|un(K)) = En(k)|un(K))

H (k) is a Hermitian operator on the Hilbert space H = C?" and |u, (k)) € C?".
For each k € T, we have |u, (k)) € C?".
So, we have the Bloch bundle locally 7% x C?" with fiber C?” and base space T%.

In an insulator, we consider valence Bloch bundle which is locally T¢ x C™.
All vector bundles are locally trivial; namely can be written as a cross product
of base and fiber. However, they can be non-trivial globally.

Triviality or non-triviality of the valence bundle of an insulator determine the
topological character of it.

For example; a cylinder S = S' x R is a trivial line bundle over S*.

However, a Mobius strip M is a non-trivial line bundle over S!'. It has a twist
on the bundle structure.
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One can define a section without zero in trivial bundles. But, thisi is not pos-
sible in non-trivial bundles.

Non-triviality of a bundle is characterized by the characteristic classes (Chern
classes, Pontryagin classes, etc.) which are topological invariants.

A topological insulator is an insulator with a non-trivial valence bundle.
A topological insulator Hamiltonian in one topological class cannot be deformed
continuously to a Hamiltonian in another topological class (deformation means
changing Hamiltonian parameters without closing the gap).
To convert one topological class Hamiltonian to another one, there must be a
gapless state between two classes. Hence, the insulating phase must disappear.

For example, a topological insulator which has an interface with vacuum

(which is a trivial insulator) has a gapless boundary although insulating in the
bulk.

~ boundary
L]
B b
e R A,
A F S,
R A
e
o
P o iy
e

A ' i i s ]
Z //;t@?—_:@ggwx,{,;; non-topological ("trivial™)
7~ insdlator 1 insulator/vacuum
R

e o
o e
s
e
ot
i

These gapless boundary degrees of freedom are robust to perturbations.
There are two types of topological insulators;

i) Chern insulators (determined by Z topological invariants)
ii) Zs insulators (determined by Z, topological invariants)

10.1 Chern insulators

For the Bloch Hamiltonian H (k) with eigenstates |u, (k)) and eigenvalues E,, (k);
H)un (k) = En (klun(F)))

the Berry connection is defined by

A = —i(u(k)|dlu(k))
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where d is the exterior derivative, so A is a 1-form.

The Berry curvature is
F =dA.

The topological invariant that characterizes the 2-dimensional Chern insulators
is the first Chern number )
S
2 BZ

For higher even dimensions, we have higher Chern numbers (which take integer
values).
For example, a Bloch Hamiltonian in the form

with o; are Pauli matrices, the first Chern number corresponds to

o~

LI (a,%a(k) X akya(k)) Ad(k)

= —
! 47 BZ

where d(k) = g with [d(k)| = /@ (k) + d3(k) + &3 (k).
Example: Haldane model

Let us consider the honeycomb lattice of graphene with a magnetic flux
which is non-zero locally but zero in a unit cell.

The flux ¢, in the regions a and the flux ¢; in the regions b are related as
¢q = —¢p and the flux ¢. = 0 in the region c. Hence, the total flux is zero.
Bloch Hamiltonian of this system is given by

66



with o; are Pauli matrices and

do(k) = 2ty cosqchos (k.b;)
di(k) = tlzcos(lk.ai)

dy(k) = tlisin(k.ai)

ds(k) = M:thsin(bz:sin(k.bi)

where a; are Bravais lattice basis vectors and by = a; — ag, by = a3 — ay,
b3 = a; — as.

t1 and t5 are nearest neighbour and next nearest neighbour hopping parameters,
respectively and M is the on-site energy.

¢ = 2 (200 + ¢p) with ¢o = b

Valence and conduction bands of graphene touch each other at two different
points which are called K and K’ points.

By considering low energy limit of H (k) (small &k limit) at K and K’ points, we
obtain

3

H(K +k) = =3tycosd+ Jati(—kzor = kyoo) + (M + 3V/3ty sin ¢)o3
3

H(K'+k) = —3tycos¢+ St (kaot — kyoa) + (M — 3V/3ty sin ¢) o3

This is a Dirac Hamiltonian and o3 is the mass term which determine the gap
property of the system.
Chern number of the system corresponds to
1
C, = 5 [sgn(ds(k) at K) — sgn(ds(k) at K')]

= % [sgn(M + 33ty sin ¢) — sgn(M — 3v/3t, sin ¢)]

We consider three cases;

i) M = 3v/3tysin¢g or M = —3/3tysin ¢
In this case H (k) is gapless at K’ and gapped at K or gapless at K and gapped
at K'.
So, this is a gapless phase.

ii) M > 3v/3tysin ¢
In this case C; = 0, hence we have a trivial insulator.

iii) M < 3v/3tysin ¢

In this case C; = +1 for ¢ > 0 and C; = —1 for ¢ < 0, hence we have topolog-
ical insulator phases.
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So, by deforming Hamiltonian parameters, we obtain different topological
phases and there is a gapless transition between them which is the case (i).

M [ta

33

0

-33

For ¢ = 0, hence no magnetic fluxes, Haldane model reduces to an ordinary
insulator, C; = 0 in all cases.

10.2 7, insulators

Time reversal operator 7' maps momentum k to —k.
If the Bloch Hamiltonian H (k) of a system is invariant under T', namely

H=THT!

then, Chern number cannot characterize the topological property of the system.
Some points on BZ are invariant under 7. These are called Time Reversal In-
variamt Momentum (TRIM) points.

For the eigenstates |u,(k)), let us define the sewing matrix

By using the determinant det(w(k)) and the Pfaffian Pf(w(k)) which is defined
as Pf? = det, we can construct the Z, invariant of the system as

Pi(w(k:))
U= _ AP
i—rriv V det(w(ki))
which takes +1 values. If v = 1, we have trivial insulator and if v = —1, we

have topological insulator.
Example: Kane-Mele model

By adding spin-orbit coupling term to the Haldane model, we obtain Kane-
Mele model which is a Zs insulator.
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Spin degrees of freedom splits the Hamiltonian to spin up and spin down parts,
and the mass terms of the Bloch Hamiltonian at K and K’ points are given by

hi(K) (M 4 3vV3\s0)03 + ...
h(K') = (M —3vV3\s0)os +
hy(K) (M —3v3Xs0)0s +

hy (K" (M 4 3vV3Xs0)03 + ...

where Ago is the spin-orbit coupling parameter.

Although the total Chern number does not characterize the topology of the
system, the difference of spin up and spin down Chern numbers corresponds to
the Zsy invariant.

We have three cases;

i) M > 3\/5)\50

Chern numbers are

Cy = % [sgn(M + 3v3AS0) — sgn(M — 3v/3)\S0)] =
Cy = % [sgn(M — 3V3A\SO) — sgn(M + 3V3A\S0)] =

So, we have Ci4 + (1) = 0 and Ci4 — €1 = 0, and this corresponds to the
trivial insulator.

ii) M < 3v3\s0
Chern numbers are Cj+ =1 and Cyp = —1.
So, we have CIT + Cli =0, but CIT — CLL # 0.
This corresponds to a topological insulator.

ii) M = 3v3\s0
The Hamiltonian is gapless in this case.
Hence, there is gapless phase between two different topological phases.

Spin Chern number (difference of Ci4 and C4) does not work in all systems,
S0 Zs invariant is more general than this.

10.3 Classification

Gapped free-fermion Hamiltonians can be classified w.r.t. anti-unitary symme-
tries they can admit.

We consider two anti-unitary symmetries;

i) Time-reversal TH (k)T = H(—k)

ii) Charge conjugation (particle-hole) CH (k)C~t = —H(—k)

and their combination
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iii) Chiral symmetry SH(k)S~—! = —H (k)

The square of T and C can be +1 (for example for fermionic systems we
have T? = —1).
So, we have three possibilities for T; T = 0, T? = +1
and three possibilities for C; C =0, C? = £1
where 0 means the non-existence of the symmetry.
Moreover, S can be 0 or 1 when both T'= C = 0.
Then, we have ten possibilities given in the table which corresponds to the
Altland-Zirnbauer (AZ) classification of gapped free-fermion Hamiltonians

T C S
0 0 0
0 0 1
+1 0 0
+1 +1 1
0 +1 0
-1 +1 1
-1 0 0
-1 -1 1
0 -1 0
+1 -1 1

Indeed, these Hamiltonians are elements of Cartan symmetric spaces and
have topological properties in relevant dimensions.
The general picture is given as a peridoic table in the following form

label | T C S| 0 1 2 3 4 ) 6 7
A 0 0o 0z 0 Z 0 Z 0 Z 0
AlIlIl | 0 o 170 zZ 0 Z 0 Z 0 Z
Al |41 0 0| Z O 0 0 Z 0 Zy Zo
BDI | +1 +1 1|Zy Z O 0 0 Z 0 Z
D 0 +1 012y Zo Z O 0 0 Z 0
DII | -1 +1 1| 0 Zy Ze Z 0 0 0 zZ
All | -1 0 0| Z 0 Zg Zo Z O 0 0
cm -1 -1 1|10 Z 0 Zs Zs Z 0 0
C 0 -1 0] 0 0 Z 0 Zy Zo Z O
cI |+1 -1 1| 0 0 0 Z 0 Zy Zy Z

The table repeats itself after dimension seven.
The first two rows correspond to complex classes and the last eight rows corre-
spond to real classes.
The class A of dimension 2 is the Haldane model, and the class AIl of dimension
2 is the Kane-Mele model.
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This table originates from the Clifford algebra chessboard.
If we consider the vector spaces V = R™* with n negative and s positive gener-
ators, the Clifford algebras defined on them correspond to the matrix algebras
constructed out of the division algebras R, C, H.

Clys n=0 1 2 3 4 5 6 7
5=0 R C H HoH H(2) W) R(3) R(8) & R(8)
1 R&R R(2) C©2) H(2) H(2) & H(2) H(4) (@) R(16)

2 R(2) R(2) & R(2) R(4) C(4) H(4) H(4) @ H(4) H(8) C(16)

3 c(2) R(4) R(4) & R(4) R(8) C() H(3) TH(8) @ H(8) H(16)

4 H(2) C(4) R(8) R(8) @ R(8) RR(16) C(16) H(16) H(16) & H(16)

5 HE2) oH?) H(4) C(@®) R(16)  R(16) & R(16) R(32) ©(32) H(32)

6 H(4) H(4) & H(4) H(8) C(16) R(32) R(32) & R(32) R(64) C(64)

7 C() H(3) H(S) @ H(S)  H(16) C(32) R(64) R(64) & R(64) R(128)

where K(n) denotes n x n matrices with entries in K. The table repeats
itself after dimension seven.
We define
CZZ = Clo)n

and because of the isomorphism
Olms = Cl:—n(mod 8)

the Clifford chessboard is also a table for C’l’;_n(][no d8)"
We consider real vector bundles on a manifold M with a Clifford algebra

structure.

Hence, we have Clifford bundles C'} on M which means that Clifford algebras

with k negative generators.

We can define Dirac operators (Hodge-de Rham operators) P = e*.Vx, on

these bundles.

Index of a Dirac operator is defined by

indPy, = dim(kery) — dim(coker Py,).

Atiyah-Singer index theorem relates the analytic index of real Dirac operators
to the topological invariants of the bundle as

dimcHy (mod 2), for k =1 (mod 8)
) dimgHy(mod 2), for k =2 (mod 8)
md(Pe) = 1A(), for k = 4 (mod 8)
AM), for £ =0 (mod 8)

where Hj, is the space of harmonic spinors and E(M ) is the A-genus of M which
is written in terms of Pontryagin classes.

A-genus is an integer number and it is an even integer for dim 4(mod 8).

So, the index of P takes values in Zs for £k = 1 and 2(mod 8) and in Z for
k =0 and 4(mod 8).

If we choose k = s — n, the Clifford chessboard can be turned into the index
table of Dy_p(mod 8)-
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Since ind(Ps—_n(mod 8)) corresponds to 0 or takes values in Z and Zs, a simple
comparison shows that the Clifford chessboard turns into the peroidic table of
topological phases of real classes.
These Dirac operators correspond to the Dirac Hamiltonians of topological in-
sulators and the index of Dirac operators determine the topological invariants
characterizing topological phases.

Moreover, Z and Zs groups appearing in the index of Dirac oeprators are
related to the K-theory groups of vector bundles.
A minimal free-abelian group obtained from a monoid A (group without inverse)
is defines as its K-group K (A).
(K(N) = Z for addition operation and K(Z) = Q for multiplication operation).
Isomorphism classes of vector bundles constitute a monoid structure.
If we consider stable equivalence classes, that is for two vector bundles E and

F, if we have
Egl"=FoI™

where I" is a n-dimensional trivial bundle, then we say that E and F' are stably
equivalent.

Stable equivalence classes constitute a group whichis the K-group of isomor-
phism classes monoid.

Index of Dirac operators have 1:1 correspondence with K-groups of sphere bun-
dles and these K-groups which are denoted by Ky (s=n)(mod &) (pt) exactly gives
the periodic table of real classes.

These bundles correspond to the Bloch bundles of topological insulators (in the
continuum limit) and periodic table is a result of K-groups of Bloch bundles.

There are also relations with Groethendieck groups and Clifford algebra ex-
tensions which give the symmetry properties w.r.t T, C and S (see U. Ertem,
Index of Dirac operators and classification of topological insulators, J. Phys.
Commun. 1 (2017) 035001).

Complex classes are originated from the table of complex Clifford algebras

(Clsfn(mod 2) = 0 1
s=0 (Clo (Cll
1 Cl, Cly

and the index theorem

. _ Td(M), for k even
ind(®e) = { 0, for k odd

where Td(M) denotes the Todd class which can be written in terms of Chern
classes.
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